首页> 外文期刊>Journal of chemical theory and computation: JCTC >Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies
【24h】

Fragment-Based Electronic Structure for Potential Energy Surfaces Using a Superposition of Fragmentation Topologies

机译:基于片段的电子结构,用于使用碎片拓扑叠加的潜在能量表面

获取原文
获取原文并翻译 | 示例
           

摘要

We present a new approach for adaptive molecular fragmentation. Here multiple fragmentation protocols, or fragmentation topologies, are combined to efficiently and accurately construct potential energy surfaces that are in agreement with post-Hartree–Fock levels of electronic structure theories at density functional theory (DFT) cost. We benchmark the method through evaluation of quantum nuclear effects in a set of protonated water clusters that are known to display significant quantum effects. In such systems, the straightforward use of molecular fragmentation is hindered by the fact that the most appropriate fragmentation strategy changes as a function of nuclear degrees of freedom. Our approach uses a multilayered hypergraph formalism to decompose the potential energy surface, where, at the very top layer, a tessellation of the potential surface yields a set of independent, but correlated, graphical nodes or vertices; each node represents a different protocol to fragment the molecular system. Correlation between the nodes appears as edges and faces in the graph at the top layer and allows the overall potential surface to be represented as a superposition of multiple fragmentation topologies with the coefficients for the superposition arising from a Hamiltonian formalism that is reminiscent of nonadiabatic dynamics. This allows for a natural interpretation of the individual molecular fragmentation topologies as diabatic or valence-bond-type states which we exploit in our formalism. As stated, the method is demonstrated for protonated water clusters where we are able to obtain potentials surfaces in agreement with post-Hartree–Fock methods at DFT cost.
机译:我们提出了一种新的自适应分子破碎方法。这里,多种碎片协议或碎片拓扑组合以有效,准确地构造潜在的能量表面,这些能量表面与密度泛函理论(DFT)成本的电子结构理论的后海底水平一致。我们通过评估已知显着的量子效应的一组质子化水簇中的量子核效应来基准方法。在这样的系统中,通过作为核自由度的函数变化,最合适的碎片策略改变的事实受到分子破碎的直接使用。我们的方法使用多层的超图形形式主义来分解势能表面,在非常顶层,电位表面的曲面细胞内产生一组独立,但相关的图形节点或顶点;每个节点代表一个不同的协议,用于片段分子系统。节点之间的相关性显示为顶层的曲线图中的边缘,并且允许整个电位表面表示为多个碎片拓扑的叠加,其中多个碎片拓扑的叠加与来自汉密尔顿人的形式主义引起的叠加系数,这些系数是喜致的,这些系数是让汉密尔顿主义的形式主义中想起非等压动态。这允许各种分子破碎拓扑的自然解释为我们在我们的形式主义中利用的糖尿病或价键型状态。如上所述,对质子化水簇的证明该方法,其中我们能够在DFT成本下与Hartree-Fock方法一致地获得潜在的表面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号