首页> 外文期刊>Journal of Cerebral Blood Flow and Metabolism: Official Journal of the International Society of Cerebral Blood Flow and Metabolism >Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms
【24h】

Prediction of hemorrhagic transformation after experimental ischemic stroke using MRI-based algorithms

机译:基于MRI的算法实验缺血性脑卒中后出血性转化预测

获取原文
获取原文并翻译 | 示例

摘要

Estimation of hemorrhagic transformation (HT) risk is crucial for treatment decision-making after acute ischemic stroke. We aimed to determine the accuracy of multiparametric MRI-based predictive algorithms in calculating probability of HT after stroke. Spontaneously, hypertensive rats were subjected to embolic stroke and, after 3 h treated with tissue plasminogen activator (Group I: n = 6) or vehicle (Group II: n = 7). Brain MRI measurements of T-2, T-2*, diffusion, perfusion, and blood-brain barrier permeability were obtained at 2, 24, and 168 h post-stroke. Generalized linear model and random forest (RF) predictive algorithms were developed to calculate the probability of HT and infarction from acute MRI data. Validation against seven-day outcome on MRI and histology revealed that highest accuracy of hemorrhage prediction was achieved with a RF-based model that included spatial brain features (Group I: area under the receiver-operating characteristic curve (AUC) = 0.85 +/- 0.14; Group II: AUC = 0.89 +/- 0.09), with significant improvement over perfusion-or permeability-based thresholding methods. However, overlap between predicted and actual tissue outcome was significantly lower for hemorrhage prediction models (maximum Dice's Similarity Index (DSI) = 0.20 +/- 0.06) than for infarct prediction models (maximum DSI = 0.81 +/- 0.06). Multiparametric MRI-based predictive algorithms enable early identification of post-ischemic tissue at risk of HT and may contribute to improved treatment decision-making after acute ischemic stroke.
机译:急性缺血性卒中后治疗决策的风险估算(HT)风险至关重要。我们旨在确定脑卒中后HT计算概率的多体MRI的预测算法的准确性。自发地,高血压大鼠患有栓塞中风,并在用组织纤溶酶原激活剂(I基团I族:N = 6)或载体处理3小时后(II族:N = 7)。在卒中后2,24和168小时获得T-2,T-2 *,扩散,灌注和血脑屏障渗透性的脑MRI测量。广义线性模型和随机森林(RF)预测算法是开发的,以计算来自急性MRI数据的HT和梗塞的概率。针对MRI和组织学的七日结果的验证揭示了通过包括空间脑特征的基于RF的模型实现出血预测的最高精度(第I组:接收器操作特征曲线(AUC)下的区域= 0.85 +/- 0.14; II族:AUC = 0.89 +/- 0.09),对灌注或渗透率的阈值化方法显着改善。然而,对于出血预测模型(最大骰子相似性指数(DSI)= 0.20 +/- 0.06)来说,预测和实际组织结果之间的重叠显着降低(最大DICE)= 0.20 +/- 0.06)(最大DSI = 0.81 +/- 0.06)。基于Multiparametric MRI的预测算法使得能够在HT的风险下早期鉴定缺血性组织,并且可能有助于改善急性缺血性卒中后的治疗决策。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号