首页> 外文期刊>Journal of biomedical informatics. >Cross-domain targeted ontology subsets for annotation: The case of SNOMED CORE and RxNorm
【24h】

Cross-domain targeted ontology subsets for annotation: The case of SNOMED CORE and RxNorm

机译:用于注释的跨域目标本体子集:SnoMed Core和Rxnorm的情况

获取原文
获取原文并翻译 | 示例

摘要

The benefits of using ontology subsets versus full ontologies are well-documented for many applications. In this study, we propose an efficient subset extraction approach for a domain using a biomedical ontology repository with mappings, a cross-ontology, and a source subset from a related domain. As a case study, we extracted a subset of drugs from RxNorm using the UMLS Metathesaurus, the NDF-RT cross-ontology, and the CORE problem list subset of SNOMED CT. The extracted subset, which we termed RxNorm/CORE, was 4% the size of the full RxNorm (0.4% when considering ingredients only). For evaluation, we used CORE and RxNorm/CORE as thesauri for the annotation of clinical documents and compared their performance to that of their respective full ontologies (i.e., SNOMED CT and RxNorm). The wide range in recall of both CORE (29-69%) and RxNorm/CORE (21-35%) suggests that more quantitative research is needed to assess the benefits of using ontology subsets as thesauri in annotation applications. Our approach to subset extraction, however, opens a door to help create other types of clinically useful domain specific subsets and acts as an alternative in scenarios where well-established subset extraction techniques might suffer from difficulties or cannot be applied.
机译:使用本体子集与完整本体的好处是许多应用程序的充分记录。在本研究中,我们向域使用具有映射的生物医学本体存储库,横向学和来自相关域的源子集来提出有效的子集提取方法。作为一个案例研究,我们使用UMLS Metathesaurus,NDF-RT跨论学和SnoMed CT的核心问题列表子集提取了从RxNorm中的药物中的一种药物。我们称之为Rxnorm /核心的提取的子集是全rxnorm的尺寸为4%(仅在考虑成分时0.4%)。对于评估,我们使用核心和rxnorm /核心作为临床文献的注释并将其表现与其各自的全部本体论(即,SnoMed CT和Rxnorm)进行了化。回顾核心(29-69%)和rxnorm /核心(21-35%)的广泛范围表明需要更多的定量研究来评估使用本体子集作为注释应用中的叙述的益处。然而,我们的子集提取方法打开了一门,以帮助创建其他类型的临床有用的域特定子集,并作为方案中的替代方案,其中既定的子集提取技术可能遭受困难或者不能应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号