首页> 外文期刊>Journal of Biomechanics >Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation
【24h】

Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation

机译:体内和体外4D流动MRI中TCPC的血流动力学研究及数值模拟

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Introduction: Altered total cavopulmonary connection (TCPC) hemodynamics can cause long-term complications. Patient-specific anatomy hinders generalized solutions. 4D Flow MRI allows in vivo assessment, but not predictions under varying conditions and surgical approaches. Computational fluid dynamics (CFD) improves understanding and explores varying physiological conditions. This study investigated a combination of 4D Flow MRI and CFD to assess TCPC hemodynamics, accompanied with in vitro measurements as CFD validation. 4D Flow MRI was performed in extracardiac and atriopulmonary TCPC subjects. Data was processed for visualization and quantification of velocity and flow. Three-dimensional (3D) geometries were generated from angiography scans and used for CFD and a physical model construction through additive manufacturing. These models were connected to a perfusion system, circulating water through the vena cavae and exiting through the pulmonary arteries at two flow rates. Models underwent 4D Flow MRI and image processing. CFD simulated the in vitro system, applying two different inlet conditions from in vitro 4D Flow MRI measurements; no-slip was implemented at rigid walls. Velocity and flow were obtained and analyzed. The three approaches showed similar velocities, increasing proportionally with high inflow. Atriopulmonary TCPC presented higher vorticity compared to extracardiac at both inflow rates. Increased inflow balanced flow distribution in both TCPC cases. Atriopulmonary IVC flow participated in atrium recirculation, contributing to RPA outflow; at baseline, IVC flow preferentially traveled through the LPA. The combination of patient-specific in vitro and CFD allows hemodynamic parameter control, impossible in vivo. Physical models serve as CFD verification and fine-tuning tools. (C) 2015 Elsevier Ltd. All rights reserved.
机译:介绍:改变的总肺部连接(TCPC)血液动力学会导致长期并发症。患者特异性解剖性阻碍了广义解决方案。图4D流动MRI允许体内评估,但在不同条件和手术方法下没有预测。计算流体动力学(CFD)改善了理解和探讨了不同的生理条件。本研究研究了4D流动MRI和CFD的组合,以评估TCPC血液动力学,伴有体外测量作为CFD验证。 4D流动MRI在肢体和阿嗜酸性TCPC受试者中进行。处理数据以进行可视化和速度和流量的量化。从血管造影扫描产生三维(3D)几何形状,并通过添加剂制造用于CFD和物理模型结构。这些模型与灌注系统连接,通过腔静脉循环水并以两个流速通过肺动脉脱落。模型介入4D流动MRI和图像处理。 CFD模拟体外系统,从体外4D流动MRI测量中施加两种不同的入口条件;在刚性墙壁上实施无滑动。获得并分析了速度和流动。这三种方法显示出类似的速度,高流入量比例增加。与流入速率的eartacardiac相比,与术语相比呈现更高的涡流。在TCPC病例中增加流入平衡流量分布。 Atriopulmonary IVC流程参与了含量再循环,有助于RPA流出;在基线时,IVC流程优先通过LPA进行。体外和CFD的患者特异性组合允许血液动力学参数控制,在体内不可能。物理模型用作CFD验证和微调工具。 (c)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号