首页> 外文期刊>Journal of Biomechanics >Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation
【24h】

Hemodynamic study of TCPC using in vivo and in vitro 4D Flow MRI and numerical simulation

机译:使用体内和体外4D流MRI和数值模拟研究TCPC的血流动力学

获取原文
获取原文并翻译 | 示例
           

摘要

Introduction: Altered total cavopulmonary connection (TCPC) hemodynamics can cause long-term complications. Patient-specific anatomy hinders generalized solutions. 4D Flow MRI allows in vivo assessment, but not predictions under varying conditions and surgical approaches. Computational fluid dynamics (CFD) improves understanding and explores varying physiological conditions. This study investigated a combination of 4D Flow MRI and CFD to assess TCPC hemodynamics, accompanied with in vitro measurements as CFD validation. 4D Flow MRI was performed in extracardiac and atriopulmonary TCPC subjects. Data was processed for visualization and quantification of velocity and flow. Three-dimensional (3D) geometries were generated from angiography scans and used for CFD and a physical model construction through additive manufacturing. These models were connected to a perfusion system, circulating water through the vena cavae and exiting through the pulmonary arteries at two flow rates. Models underwent 4D Flow MRI and image processing. CFD simulated the in vitro system, applying two different inlet conditions from in vitro 4D Flow MRI measurements; no-slip was implemented at rigid walls. Velocity and flow were obtained and analyzed. The three approaches showed similar velocities, increasing proportionally with high inflow. Atriopulmonary TCPC presented higher vorticity compared to extracardiac at both inflow rates. Increased inflow balanced flow distribution in both TCPC cases. Atriopulmonary IVC flow participated in atrium recirculation, contributing to RPA outflow; at baseline, IVC flow preferentially traveled through the LPA. The combination of patient-specific in vitro and CFD allows hemodynamic parameter control, impossible in vivo. Physical models serve as CFD verification and fine-tuning tools. (C) 2015 Elsevier Ltd. All rights reserved.
机译:简介:改变总的腔肺连接(TCPC)血液动力学会导致长期并发症。患者特定的解剖结构妨碍了普遍的解决方案。 4D Flow MRI允许进行体内评估,但不能根据不同的条件和手术方法进行预测。计算流体动力学(CFD)可增进了解并探索各种生理状况。这项研究调查了4D Flow MRI和CFD的组合以评估TCPC血流动力学,并结合体外测量作为CFD验证。在心外和房肺TCPC受试者中进行了4D Flow MRI。处理数据以可视化和量化速度和流量。三维(3D)几何形状是通过血管造影扫描生成的,并用于CFD和通过增材制造进行物理模型构建。这些模型连接到灌注系统,使水通过腔静脉循环并以两种流速通过肺动脉流出。模型进行了4D Flow MRI和图像处理。 CFD通过在体外4D流MRI测量中应用两种不同的入口条件来模拟体外系统;刚性墙壁没有打滑。获得并分析了速度和流量。三种方法显示出相似的速度,并随着高流入量成比例地增加。与两种心率的心外膜相比,心房TCPC表现出更高的涡度。在两种TCPC情况下均增加了流入平衡流分配。心房IVC血流参与心房再循环,导致RPA流出。在基线时,IVC流量优先通过LPA。患者特定的体外和CFD的结合可以控制血液动力学参数,而在体内是不可能的。物理模型可以用作CFD验证和微调工具。 (C)2015 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号