...
首页> 外文期刊>JOM >Strain Rate Sensitivity of the Nanoindentation Creep of Ag, Cu, and Ni Thin Films
【24h】

Strain Rate Sensitivity of the Nanoindentation Creep of Ag, Cu, and Ni Thin Films

机译:Ag,Cu和Ni薄膜的纳米凸缘蠕变的应变率敏感性

获取原文
获取原文并翻译 | 示例

摘要

Ag, Cu, and Ni films each of 150 nm, 300 nm, 600 nm and 1000 nm thickness were deposited on Si using E-beam evaporation. The structural and surface properties were explored using FE-SEM and AFM. The crystal structure and orientation of the films were examined using x-ray diffraction. Nanocrystalline grain structure formation was observed to dominate the crystal film growth. The nanomechanical and creep properties were measured using nano-indentation. The hardness results as calculated based on tip calibration and contact stiffness for Ag differ due to excessive pile-up. Since Cu and Ni endure less pile-up, the hardness results exhibit little or no difference. For Ag films, the hardness based on tip calibration increases with the normalized depth of indentation as the film thickness decreases and remains nearly flat (no size effects). On the other hand, the hardness based on contact stiffness remains the same with the normalized depth of indentation regardless of the film thickness. For creep experiments, the strain rate sensitivity, m, of the hardness for the Ag, Cu, and Ni films is reported as 0.033 +/- 0.001, 0.03 +/- 0.003, and 0.04 +/- 0.005 respectively. The normalized activation volume (V*/b(3)), when plotted versus the hardness (H), decreases with increasing hardness. V*/b(3) measured at the surface of the bulk materials, i.e., shallow indents, is similar to V*/b(3) measured for thin films when tested at 10-20% of the film thickness to circumvent substrate effects. V*/b(3) coalesces with the literature data from conventional uniaxial testing and nano-indentation data for bulk Ag, Cu, and Ni samples. Although m is different from bulk to thin films due to the differences in grain sizes, the activation volume results for thin films extrapolate substantially to the bulk material except for Ni as the results experience a slight deviation.
机译:使用E-束蒸发在Si上沉积在150nm,300nm,600nm和1000nm厚度中的每一个中的每一个中的每一个中的每一个。使用Fe-SEM和AFM探讨了结构和表面性质。使用X射线衍射检查膜的晶体结构和取向。观察到纳米晶体结构形成以占据晶体膜生长。使用纳米压痕测量纳米力学和蠕变性质。基于尖端校准和接触刚度计算的硬度结果由于过度堆积而导致的Ag。由于Cu和Ni持续堆积,硬度结果很少或没有差异。对于Ag膜,基于尖端校准的硬度随着膜厚度的降低而归一化的压痕深度增加,并且仍然几乎是平坦的(没有尺寸效应)。另一方面,无论膜厚度如何,基于接触刚度的硬度保持相同的压痕深度。对于蠕变实验,Ag,Cu和Ni薄膜的硬度的应变率灵敏度M报告为0.033 +/- 0.001,0.03 +/- 0.003和0.04 +/- 0.005。当绘制与硬度(H)相对于硬度(H)时,归一化活化体积(V * / B(3))随着硬度的增加而降低。在散装材料表面测量的V * / B(3),即浅缩进,类似于在薄膜时测量的薄膜,当在膜厚度的10-20%处测试以避紧底物效应。 V * / B(3)与来自常规单轴检测的文献数据和纳米缩进数据合并,用于批量Ag,Cu和Ni样品。虽然M由于晶粒尺寸的差异而与薄膜不同,但除Ni外,薄膜的激活体积结果基本上外推外推出,除了Ni,因为结果经历了轻微的偏差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号