...
【24h】

Multi-Frequency Pulsed Overhauser DNP at 1.2 Tesla

机译:在1.2特斯拉的多频脉冲过度向量DNP

获取原文
获取原文并翻译 | 示例
           

摘要

Dynamic nuclear polarization (DNP) is a methodology to increase the sensitivity of nuclear magnetic resonance (NMR) spectroscopy. It relies on the transfer of the electron spin polarization from a radical to coupled nuclear spins, driven by microwave excitation resonant with the electron spin transitions. In this work we explore the potential of pulsed multi-frequency microwave excitation in liquids. Here, the relevant DNP mechanism is the Overhauser effect. The experiments were performed with TEMPOL radicals in aqueous solution at room temperature using a Q-band frequency (1.2 T) electron paramagnetic resonance (EPR) spectrometer combined with a Minispec NMR spectrometer. A fast arbitrary waveform generator (AWG) enabled the generation of multi-frequency pulses used to either sequentially or simultaneously excite all three N-14-hyperfine lines of the nitroxide radical. The multi-frequency excitation resulted in a doubling of the observed DNP enhancements compared to single-frequency microwave excitation. Q-band free induction decay (FID) signals of TEMPOL were measured as a function of the excitation pulse length allowing the efficiency of the electron spin manipulation by the microwave pulses to be extracted. Based on this knowledge we could quantitatively model our pulsed DNP enhancements at 1.2 T by numerical solution of the Bloch equations, including electron spin relaxation and experimental parameters. Our results are in good agreement with theoretical predictions. Whereas for a narrow and homogeneous single EPR line continuous wave excitation leads to more efficient DNP enhancements compared to pulsed excitation for the same amount of averaged microwave power. The situation is different for radicals with several hyperfine lines or in the presence of inhomogeneous line broadening. In such cases pulsed single/multi-frequency excitation can lead to larger DNP enhancements.
机译:动态核偏振(DNP)是提高核磁共振(NMR)光谱敏感性的方法。它依赖于通过微波激发共振驱动的自由基从自由基转移到耦合的核旋转的转移,通过微波激发谐振驱动。在这项工作中,我们探讨了液体中脉冲多频微波激励的潜力。在这里,相关的DNP机制是过竖起的效果。使用Q频段频率(1.2T)电子顺磁共振(EPR)光谱仪与MiniSpec NMR光谱仪一起在室温下在室温下用水溶液中的水溶液中的Tempol自由基进行实验。快速的任意波形发生器(AWG)使得多频脉冲的产生使得依次或同时激发所有三种Nitxide自由基的3个N-14高血清线。与单频微波激励相比,多频激励导致观察到的DNP增强件加倍。作为激发脉冲长度的函数测量Tempol的Q波段自由感应衰减(FID)信号,允许通过微波脉冲提取电子自旋操纵的效率。基于这些知识,我们可以通过Bloch方程的数值溶液定量地模拟1.2吨的脉冲DNP增强,包括电子自旋松弛和实验参数。我们的结果与理论预测有关。然而,对于窄且均匀的单个EPR线连续波激励,与相同量的平均微波功率相比,与脉冲激励相比,更有效的DNP增强。对于具有几条高血清或在不均匀的线宽的情况下,这种情况不同。在这种情况下,脉冲单/多频激励可以导致更大的DNP增强功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号