首页> 外文期刊>Transactions of the ASABE >POSITIONING CONTROL OF A HUMAN-MACHINE COOPERATIVE GRAFTING MANIPULATOR FOR UNSTRUCTURED ENVIRONMENTS
【24h】

POSITIONING CONTROL OF A HUMAN-MACHINE COOPERATIVE GRAFTING MANIPULATOR FOR UNSTRUCTURED ENVIRONMENTS

机译:用于非结构化环境的人机协同嫁接机械手的定位控制

获取原文
获取原文并翻译 | 示例
           

摘要

Crown grafting of fruit trees has the disadvantages of high labor intensity and reduced graft survival. Therefore, a human-machine cooperative manipulator that relies on passive joint braking was designed to realize position control. The manipulator can replace manual operations to solve the problem of different positions in the grafting process and provide positioning and force support for canopy grafting. This study determined that the working space of the manipulator can cover the canopy area of fruit trees. Dynamic equations were established for motion simulation and feedforward compensation control of the manipulator. According to the dynamic model, the joint braking process was simulated. The simulation results showed that the joint braking torque needs to be dynamically controlled to ensure positioning accuracy of the manipulator. A process of passive joint braking was designed based on the proposed ideal braking curve. By comparing the position control accuracy of independent proportional integral derivative (PID) control, dynamic model feedforward compensation control, and PID control based on feedforward compensation of the dynamic model in simulations, it was determined that PID control based on feedforward compensation of the dynamic model was suitable for application in the braking torque control system. Finally, prototype tests showed that PID control based on feedforward compensation of the dynamic model can realize high-precision joint braking and position control of the manipulator. The positioning error was less than 5%, and the maximum vibration acceleration amplitude was reduced by 26.7% to 68.5%. The control system of the manipulator, using PID control based on feedforward compensation of the dynamic model, can provide adaptability for unstructured environments and reduce power consumption for application in field operations.
机译:果树的冠嫁接具有高劳动力强度和降低移植物存活的缺点。因此,设计了一种依赖被动关节制动的人机协作操纵器以实现位置控制。操纵器可以取代手动操作以解决移植过程中不同位置的问题,并提供针对树冠移植的定位和力支撑。这项研究确定了操纵器的工作空间可以覆盖果树的冠层区域。建立动态方程,用于操纵器的运动仿真和前馈补偿控制。根据动态模型,模拟了联合制动过程。模拟结果表明,需要动态地控制接头制动扭矩,以确保操纵器的定位精度。基于所提出的理想制动曲线设计了一种被动联合制动的过程。通过比较独立的比例积分衍生物(PID)控制的位置控制精度,基于模拟中动态模型的前馈补偿的动态模型前馈补偿控制和PID控制,确定了基于动态模型的前馈补偿的PID控制适用于制动扭矩控制系统中的应用。最后,原型测试表明,基于动态模型的前馈补偿的PID控制可以实现机械手的高精度接头制动和位置控制。定位误差小于5%,最大振动加速度幅度降低26.7%至68.5%。操纵器的控制系统,使用基于动态模型的前馈补偿的PID控制,可以为非结构化环境提供适应性,并降低现场操作中应用的功耗。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号