...
首页> 外文期刊>Quantum information processing >Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states
【24h】

Interaction of light and semiconductor can generate quantum states required for solid-state quantum computing: entangled, steered and other nonclassical states

机译:光和半导体的相互作用可以产生固态量子计算所需的量子状态:纠缠,转向和其他非分类状态

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Proposals for solid-state quantum computing are extremely promising as they can be used to build room temperature quantum computers. If such a quantum computer is ever built, it would require built-in sources of nonclassical states required for various quantum information processing tasks. Possibilities of generation of such nonclassical states are investigated here for a physical system composed of a monochromatic light coupled to a two-band semiconductor with direct band gap. The model Hamiltonian includes both photon-exciton and exciton-exciton interactions. Time evolution of the relevant bosonic operators is obtained analytically by using a perturbative technique that provides operator solution for the coupled Heisenberg's equations of motion corresponding to the system Hamiltonian. The bosonic operators are subsequently used to study the possibilities of observing single- and two-mode squeezing and antibunching after interaction in the relevant modes of light and semiconductor. Further, entanglement between the exciton and photon modes is reported. Finally, the nonclassical effects have been studied numerically for the open quantum system scenario. In this situation, the nonlocal correlations between two modes are shown to violate EPR steering inequality. The observed nonclassical features, induced due to exciton-exciton pair interaction, can be controlled by the phase of input field, and the correlations between two modes are shown to enhance due to nonclassicality in the input field.
机译:固态量子计算的提案非常有前途,因为它们可用于构建室温量子计算机。如果曾经构建了这样的量子计算机,则需要各种量子信息处理任务所需的非分类状态的内置源。这里研究了这种非化学状态的产生的可能性,用于处理由耦合到具有直接带隙的双频半导体的单色光组成的物理系统。 Model Hamiltonian包括Photon-Exciton和Exciton-Exciton相互作用。通过使用扰动技术,通过使用扰动技术进行了分析地获得了相关助振算子的时间演变,该技术为耦合的Heisenberg的运动方程提供了与系统Hamiltonian相对应的操作员解决方案。随后,助振算子研究了在相关的光和半导体的相互作用中观察单一和两模式挤压和抗血清的可能性。此外,报告了激子和光子模式之间的缠结。最后,对开放量子系统场景进行了数值进行了数量地研究了非分化效果。在这种情况下,两种模式之间的非局部相关性被显示为违反EPR转向不等式。由于Exciton-Exciton对交互而感应的观察到的非生物特征可以由输入字段的相位控制,并且两种模式之间的相关性被示出为增强由于输入字段中的非分子性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号