首页> 外文学位 >Generation of nonclassical light using semiconductor quantum dots.
【24h】

Generation of nonclassical light using semiconductor quantum dots.

机译:使用半导体量子点生成非经典光。

获取原文
获取原文并翻译 | 示例

摘要

Sources of single photons and entangled photons are needed for proposed applications in the field of quantum information, such as quantum cryptography and linear-optical quantum computation. Most experiments in quantum information have used spontaneous parametric downconversion, which produces a random number of entangled photon pairs. Recently, however, single-photon sources based on molecules, color centers, and quantum dots have advanced significantly. A single-photon source ideally emits a series of pulses that each contain one photon. An actual source is characterized by the degree of two-photon suppression, the efficiency, and whether photons in consecutive pulses are quantum-mechanically indistinguishable.; This work focuses on the development of nonclassical light sources based on single InAs quantum dots. Quantum dots are tiny regions of a smaller-bandgap semiconductor embedded in a larger-bandgap semiconductor. Electrons and holes confined in these structures have discrete energy levels, as in an atom. Quantum dots have large dipole moments, can be isolated, and are conveniently integrated into fabricated structures, such as optical cavities. Our single-photon source uses an optically excited quantum dot, placed in a microcavity to improve its spontaneous emission properties. By optimizing the excitation conditions and applying a spectral filter to the emission, we obtain a two-photon suppression factor (compared to a Poisson distribution) as large as 40, as observed in photon correlation measurements. Through a two-photon interference experiment, we show that photons in consecutive pulses can be nearly indistinguishable. We also investigate the polarization correlation properties of photon pairs emitted through biexciton decay, with the goal of realizing a source of single pairs of polarization-entangled photons.
机译:对于量子信息领域中提出的应用,例如量子密码术和线性光学量子计算,需要单光子和纠缠光子的源。量子信息中的大多数实验都使用了自发的参数下转换,该转换会产生随机数量的纠缠光子对。然而,近来,基于分子,色心和量子点的单光子源已经有了很大的进步。理想情况下,单光子源发出一系列脉冲,每个脉冲包含一个光子。实际源的特征在于双光子抑制的程度,效率以及连续脉冲中的光子是否在量子力学上无法区分。这项工作专注于基于单个InAs量子点的非经典光源的开发。量子点是嵌入在较大带隙半导体中的较小带隙半导体的微小区域。限制在这些结构中的电子和空穴具有离散的能级,例如在原子中。量子点具有较大的偶极矩,可以隔离,并且可以方便地集成到诸如光腔之类的制造结构中。我们的单光子源使用光学激发的量子点,该量子点放置在微腔中以改善其自发发射特性。通过优化激发条件并将光谱滤波器应用于发射,我们获得了在光子相关性测量中观察到的最大为40的双光子抑制因子(与泊松分布相比)。通过两光子干涉实验,我们证明了连续脉冲中的光子几乎无法区分。我们还研究了通过双激子衰减发射的光子对的偏振相关特性,目的是实现单对偏振纠缠光子的来源。

著录项

  • 作者

    Santori, Charles Michael.;

  • 作者单位

    Stanford University.;

  • 授予单位 Stanford University.;
  • 学科 Physics Optics.; Physics Condensed Matter.
  • 学位 Ph.D.
  • 年度 2003
  • 页码 p.1317
  • 总页数 224
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 光学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号