首页> 外文期刊>Progress in Biophysics and Molecular Biology: An International Review Journal >The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels
【24h】

The thermodynamics of protein aggregation reactions may underpin the enhanced metabolic efficiency associated with heterosis, some balancing selection, and the evolution of ploidy levels

机译:蛋白质聚集反应的热力学可能是与杂种优势相关的增强的代谢效率,一些平衡选择以及倍增性水平的演变

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Identifying the physical basis of heterosis (or "hybrid vigor") has remained elusive despite over a hundred years of research on the subject. The three main theories of heterosis are dominance theory, overdominance theory, and epistasis theory. Kacser and Burns (1981) identified the molecular basis of dominance, which has greatly enhanced our understanding of its importance to heterosis. This paper aims to explain how overdominance, and some features of epistasis, can similarly emerge from the molecular dynamics of proteins. Possessing multiple alleles at a gene locus results in the synthesis of different allozymes at reduced concentrations. This in turn reduces the rate at which each allozyme forms soluble oligomers, which are toxic and must be degraded, because allozymes co-aggregate at low efficiencies. The model developed in this paper can explain how heterozygosity impacts the metabolic efficiency of an organism. It can also explain why the viabilities of some inbred lines seem to decline rapidly at high inbreeding coefficients (F > 0.5), which may provide a physical basis for truncation selection for heterozygosity. Finally, the model has implications for the ploidy level of organisms. It can explain why polyploids are frequently found in environments where severe physical stresses promote the formation of soluble oligomers. The model can also explain why complex organisms, which need to synthesize aggregation-prone proteins that contain intrinsically unstructured regions (IURs) and multiple domains because they facilitate complex protein interaction networks (PINS), tend to be diploid while haploidy tends to be restricted to relatively simple organisms. (C) 2017 Elsevier Ltd. All rights reserved.
机译:尽管对该受试者进行了一百年的研究,但鉴定杂种优势的物理基础(或“杂交活力”)仍然难以难以实现。杂种优势的三个主要理论是占主导地位理论,跨度理论和超越理论。 Kacser和Burns(1981)确定了优势的分子基础,这极大地提高了我们对杂种优势的重要性的理解。本文旨在解释如何跨越的跨越民族的跨国公司和一些特征,可以类似地从蛋白质的分子动态中出现。在基因基因座上具有多个等位基因导致在减少浓度下合成不同的单沸酶。这反过来减少了每种酶体形成可溶性低聚物的速率,这是有毒的,并且必须降解,因为齐卓在低效率下共聚。本文开发的模型可以解释杂合子如何影响生物体的代谢效率。它还可以解释为什么一些自交系的通行率似乎在高近亲繁殖系数(F> 0.5)中迅速下降,这可能为杂合子的截断选择提供物理基础。最后,该模型对倍性生物的影响有影响。它可以解释为什么在严重物理应力促进可溶性低聚物的形成的环境中经常发现多倍体。该模型还可以解释为什么复杂的生物,需要合成含有本质上非结构化区域(IURS)和多个结构域的聚集 - 易于蛋白质,因为它们促进了复杂的蛋白质相互作用网络(销),往往是二倍体的,而欧倍性趋于仅限于相对简单的生物体。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号