首页> 外文期刊>Proceedings of the Institution of Mechanical Engineers, Part C. Journal of mechanical engineering science >Graphics process unit accelerated lattice Boltzmann simulation of indoor air flow: Effects of sub-grid scale model in large-eddy simulation
【24h】

Graphics process unit accelerated lattice Boltzmann simulation of indoor air flow: Effects of sub-grid scale model in large-eddy simulation

机译:图形工艺单元加速了室内空气流量的格子Boltzmann模拟:副网格尺度模型在大涡模拟中的影响

获取原文
获取原文并翻译 | 示例
           

摘要

In this present study, three-dimensional lattice Boltzmann method is implemented with the popular turbulence modeling method large-eddy simulation incorporating three different non-dynamic sub-grid scale models Smagorinsky, Vreman, and wall-adapting local eddy-viscosity for finding the inhomogeneous turbulent airflow patterns inside a model room with a partition. The large eddy simulation-lattice Boltzmann method code is validated with the experimental results of Posner's model, where the model room having one partition at the bottom, one inlet, an outlet placed at top wall considered for the comparisons. The lattice Boltzmann method code is also validated without any sub-grid scale model with the results of lid-driven flow in a cubic cavity. The present numerical simulations are performed by the graphics process unit accelerated parallel programs using compute unified device architecture C platform. Double precession capable a Tesla k40 with 2880 compute unified device architecture cores NVIDIA graphics process unit card has been used for these simulations. Graphics processor units have gained popularity in recent years as a propitious platform for numerical simulation of fluid dynamics. In fact, faster computational task performance in graphics process units is one of the key factors for researchers to choose graphics process unit over conventional central processing units for the implementation of data-intensive numerical methods like lattice Boltzmann method. The effects of the sub-grid scale model have been evaluated in terms of the mean velocity profiles, streamlines as well as turbulence characteristics and found that there are significant differences in the results due to the different sub-grid scale models.
机译:在本研究中,利用流行的湍流建模方法实现了三维晶格Boltzmann方法,该方法采用了三种不同的非动态子网尺度模型Smagorinsky,Vrememan和墙壁适应局部涡流粘度,用于寻找不均匀的在模型室内的湍流气流图案与隔板。大型涡旋模拟 - 格子Boltzmann方法代码用Posner模型的实验结果验证,其中模型室在底部具有一个分隔,一个入口,位于考虑比较的顶壁上的出口。还验证了格子Boltzmann方法代码,没有任何子网格刻度模型,在立方体中具有盖驱动流动的结果。使用计算统一设备架构C平台,由图形处理单元加速并行程序执行本数值模拟。双重进程能够具有2880计算统一设备架构的TESLA K40,NVIDIA图形处理单元卡已用于这些模拟。近年来,图形处理器单元作为流体动力学的数值模拟的缺乏平台。事实上,图形过程单元中的更快的计算任务性能是研究人员在传统的中央处理单元上选择图形处理单元的关键因素之一,以实现像格子Boltzmann方法等数据密集型数值方法的传统中央处理单元。已经根据平均速度分布,流线和湍流特性评估了子网规模模型的效果,并且发现由于不同的子网格尺度模型导致的结果存在显着差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号