首页> 外文期刊>Computational Geosciences >Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units
【24h】

Direct simulation of pore-scale two-phase visco-capillary flow on large digital rock images using a phase-field lattice Boltzmann method on general-purpose graphics processing units

机译:在通用图形处理单元上使用相场格子Boltzmann方法直接在大型数字岩石图像上模拟孔隙尺度的两相粘滞毛细流动

获取原文
获取原文并翻译 | 示例
           

摘要

We describe the underlying mathematics, validation, and applications of a novel Helmholtz free-energy-minimizing phase-field model solved within the framework of the lattice Boltzmann method (LBM) for efficiently simulating two-phase pore-scale flow directly on large 3D images of real rocks obtained from micro-computed tomography (micro-CT) scanning. The code implementation of the technique, coined as the eLBM (energy-based LBM), is performed in CUDA programming language to take maximum advantage of accelerated computing by use of multinode general-purpose graphics processing units (GPGPUs). eLBM's momentum-balance solver is based on the multiple-relaxation-time (MRT) model. The Boltzmann equation is discretized in space, velocity (momentum), and time coordinates using a 3D 19-velocity grid (D3Q19 scheme), which provides the best compromise between accuracy and computational efficiency. The benefits of the MRT model over the conventional single-relaxation-time Bhatnagar-Gross-Krook (BGK) model are (I) enhanced numerical stability, (II) independent bulk and shear viscosities, and (III) viscosity-independent, nonslip boundary conditions. The drawback of the MRT model is that it is slightly more computationally demanding compared to the BGK model. This minor hurdle is easily overcome through a GPGPU implementation of the MRT model for eLBM. eLBM is, to our knowledge, the first industrial grade-distributed parallel implementation of an energy-based LBM taking advantage of multiple GPGPU nodes. The Cahn-Hilliard equation that governs the order-parameter distribution is fully integrated into the LBM framework that accelerates the pore-scale simulation on real systems significantly. While individual components of the eLBM simulator can be separately found in various references, our novel contributions are (1) integrating all computational and high-performance computing components together into a unified implementation and (2) providing comprehensive and definitive quantitative validation results with eLBM in terms of robustness and accuracy for a variety of flow domains including various types of real rock images. We successfully validate and apply the eLBM on several transient two-phase flow problems of gradually increasing complexity. Investigated problems include the following: (1) snap-off in constricted capillary tubes; (2) Haines jumps on a micromodel (during drainage), Ketton limestone image, and Fontainebleau and Castlegate sandstone images (during drainage and subsequent imbibition); and (3) capillary desaturation simulations on a Berea sandstone image including a comparison of numerically computed residual non-wetting-phase saturations (as a function of the capillary number) to data reported in the literature. Extensive physical validation tests and applications on large 3D rock images demonstrate the reliability, robustness, and efficacy of the eLBM as a direct visco-capillary pore-scale two-phase flow simulator for digital rock physics workflows.
机译:我们描述了在格子Boltzmann方法(LBM)的框架内求解的新颖的亥姆霍兹自由能最小化相场模型的基础数学,验证和应用,可在大型3D图像上直接有效地模拟两相孔尺度流微计算机断层扫描(micro-CT)扫描获得的真实岩石的轮廓。该技术的代码实现(称为eLBM(基于能量的LBM))以CUDA编程语言执行,以通过使用多节点通用图形处理单元(GPGPU)来最大程度地利用加速计算。 eLBM的动量平衡求解器基于多重松弛时间(MRT)模型。使用3D 19速度网格(D3Q19方案)在空间,速度(动量)和时间坐标中离散化Boltzmann方程,这在精度和计算效率之间提供了最佳折衷方案。与常规的单松弛时间Bhatnagar-Gross-Krook(BGK)模型相比,MRT模型的优势在于(I)增强的数值稳定性,(II)独立的体积和剪切粘度,以及(III)与粘度无关的防滑边界条件。 MRT模型的缺点是,与BGK模型相比,它对计算的要求更高。通过针对eLBM的MRT模型的GPGPU实施,可以轻松克服这一小障碍。就我们所知,eLBM是利用多个GPGPU节点的基于能源的LBM的第一个工业级分布式并行实现。控制顺序参数分布的Cahn-Hilliard方程完全集成到LBM框架中,该框架显着加快了在实际系统上进行的孔尺度模拟。尽管可以在各种参考文献中分别找到eLBM仿真器的各个组件,但我们的新颖贡献是(1)将所有计算和高性能计算组件整合到一个统一的实现中;(2)通过eLBM提供全面而确定的定量验证结果包括各种类型的真实岩石图像在内的各种流域的鲁棒性和准确性。我们成功地将eLBM验证并将其应用于逐渐增加复杂性的几个瞬态两相流动问题。研究的问题包括:(1)在狭窄的毛细管中折断; (2)Haines在微模型(排水过程中),Ketton石灰石图像以及枫丹白露和Castlegate砂岩图像(排水过程中和随后的吸水过程中)上跳跃; (3)在Berea砂岩图像上进行毛细管去饱和模拟,包括将数值计算的残余非润湿相饱和度(作为毛细管数的函数)与文献报道的数据进行比较。大量的物理验证测试和在大型3D岩石图像上的应用证明了eLBM作为用于数字岩石物理学工作流程的直接粘滞毛细孔径两相流模拟器的可靠性,鲁棒性和有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号