首页> 外文期刊>Preventive Veterinary Medicine >Multivariate syndromic surveillance for cattle diseases: Epidemic simulation and algorithm performance evaluation
【24h】

Multivariate syndromic surveillance for cattle diseases: Epidemic simulation and algorithm performance evaluation

机译:牛疾病多元综合征监测:疫情模拟与算法性能评价

获取原文
获取原文并翻译 | 示例

摘要

Multivariate Syndromic Surveillance (SyS) systems that simultaneously assess and combine information from different data sources are especially useful for strengthening surveillance systems for early detection of infectious disease epidemics. Despite the strong motivation for implementing multivariate SyS and there being numerous methods reported, the number of operational multivariate SyS systems in veterinary medicine is still very small. One possible reason is that assessing the performance of such surveillance systems remains challenging because field epidemic data are often unavailable. The objective of this study is to demonstrate a practical multivariate event detection method (directionally sensitive multivariate control charts) that can be easily applied in livestock disease SyS, using syndrome time series data from the Swiss cattle population as an example. We present a standardized method for simulating multivariate epidemics of different diseases using four diseases as examples: Bovine Virus Diarrhea (BVD), Infectious Bovine Rhinotracheitis (IBR), Bluetongue virus (BTV) and Schmallenberg virus (SV). Two directional multivariate control chart algorithms, Multivariate Exponentially Weighted Moving Average (MEWMA) and Multivariate Cumulative Sum (MCUSUM) were compared. The two algorithms were evaluated using 12 syndrome time series extracted from two Swiss national databases. The two algorithms were able to detect all simulated epidemics around 4.5 months after the start of the epidemic, with a specificity of 95%. However, the results varied depending on the algorithm and the disease. The MEWMA algorithm always detected epidemics earlier than the MCUSUM, and epidemics of IBR and SV were detected earlier than epidemics of BVD and BTV. Our results show that the two directional multivariate control charts are promising methods for combining information from multiple time series for early detection of subtle changes in time series from a population without producing an unreasonable amount of false alarms. The approach that we used for simulating multivariate epidemics is relatively easy to implement and could be used in other situations where real epidemic data are unavailable. We believe that our study results can support the implementation and assessment of multivariate SyS systems in animal health.
机译:同时评估和组合来自不同数据来源的信息的多变量综合征监测(SYS)系统对于强化早期检测传染病流行病的监测系统特别有用。尽管有强劲的动机来实施多变量SYS并报告了许多方法,但兽医中的运营多元SYS系统的数量仍然非常小。一种可能的原因是评估这种监视系统的性能仍然具有挑战性,因为现场疫情数据通常不可用。本研究的目的是展示一种实用的多变量事件检测方法(定向敏感的多变量控制图),可以使用瑞士牛群的综合征时间序列数据作为示例,可以轻松应用于牲畜疾病SYS。我们提出了一种使用四种疾病模拟不同疾病的多变量流行病的标准化方法:牛病毒腹泻(BVD),传染性牛鼻窦炎(IBR),BlueTongue病毒(BTV)和Schmallenberg病毒(SV)。比较了两个定向多变量控制图算法,对数多变量指数加权移动平均(MEWMA)和多变量累积总和(MCUSUM)进行了比较。使用来自两个瑞士国家数据库中提取的12个综合征时间序列评估了这两种算法。这两种算法能够在疫情开始后4.5个月内检测所有模拟的流行病,特异性为95%。然而,结果根据算法和疾病而变化。 MEWMA算法总是比MCUSUM更早检测到流行病,而且比BVD和BTV的流行病更早检测到IBR和SV的流行病。我们的结果表明,两个定向多元控制图表是对来自多个时间序列的信息,以便早期检测从群体的时间序列的微妙变化的信息,而不会产生不合理的误报。我们用于模拟多变量流行性的方法相对容易实现,并且可以在实际疫情数据不可用的其他情况下使用。我们认为,我们的研究结果可以支持动物健康中多元系统的实施和评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号