...
首页> 外文期刊>Powder Technology: An International Journal on the Science and Technology of Wet and Dry Particulate Systems >Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties
【24h】

Hierarchical ZnO microstructures decorated with Au nanoparticles for enhanced gas sensing and photocatalytic properties

机译:具有Au纳米粒子的分层ZnO微结构,用于增强气体传感和光催化性能

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In this work, hierarchical ZnO (H-ZnO) and Au decorated hierarchical ZnO (Au-H-ZnO) microstructures have been successfully fabricated for improved gas-sensing and photocatalytic properties. Particularly, the H-ZnO microstructures are synthesized by a low temperature (60 degrees C) aqueous growth followed by a heat treatment process. The growth mechanism of the ZnO architecture is related to the concentration of sodium hydroxide. Gas sensing measurements reveal that the ZnO microstructures decorated with Au nanoparticles exhibited outstanding sensing properties toward acetone and ethanol, including the fast response and recovery rate, high sensitivity and low optimum working temperature, these test results are much better than that of pure ZnO sensor. Also, the UV-vis and photocatalytic measurements of the as-synthesized Au-H-ZnO microstructures displayed remarkable enhancement of photocatalytic properties. The improvement of the gas sensing and optical properties should be ascribed to the reality that the complex structure supplied a high absorption surface area and sufficient oxygen vacancies, and Au nanoparticles play the role as a catalyst to facilitate the absorption and desorption of gas molecules. (C) 2018 Elsevier B.V. All rights reserved.
机译:在这项工作中,已经成功地制造了分层ZnO(H-ZnO)和Au装饰等级ZnO(Au-H-ZnO)微结构,以改善气体传感和光催化性能。特别地,H-ZnO微结构通过低温(60℃)的含水生长合成,然后进行热处理方法。 ZnO结构的生长机制与氢氧化钠浓度有关。气体传感测量表明,用Au纳米粒子装饰的ZnO微观结构表现出朝向丙酮和乙醇的出色感测性,包括快速响应和恢复速率,高灵敏度和低最佳工作温度,这些测试结果远优于纯ZnO传感器。此外,AS合成的AU-H-ZnO微结构的UV-Vis和光催化测量显示出显着的光催化性能的增强。气体传感和光学性质的改善应归因于复杂结构提供高吸收表面积和足够的氧空位,并且Au纳米颗粒起到催化剂的作用,以促进气体分子的吸收和解吸。 (c)2018 Elsevier B.v.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号