首页> 外文期刊>Physiology and Molecular Biology of Plants >Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP
【24h】

Mechanism of the drought tolerance of a transgenic soybean overexpressing the molecular chaperone BiP

机译:转基因大豆的耐旱性过表达分子伴随分子伴随的耐水性的机制

获取原文
获取原文并翻译 | 示例
           

摘要

Drought is one of major constraints that limits agricultural productivity. Some factors, including climate changes and acreage expansion, indicates towards the need for developing drought tolerant genotypes. In addition to its protective role againstendoplasmic reticulum (ER) stress, we have previously shown that the molecular chaperone binding protein (BiP) is involved in the response to osmotic stress and promotes drought tolerance. Here, we analyzed the proteomic and metabolic profiles of BiP-overexpressing transgenic soybean plants and the corresponding untrans-formed line under drought conditions by 2DE-MS and GC/ MS. The transgenic plant showed lower levels of the abscisic acid and jasmonic acid as compared to untrans-formed plants both in irrigated and non-irrigated conditions. In contrast, the level of salicylic acid was higher in transgenic lines than in untransformed line, which was consistent with the antagonistic responses mediated by these phytohormones. The transgenic plants displayed a higher abundance of photosynthesis-related proteins, which gave credence to the hypothesis that these transgenic plants could survive under drought conditions due to their geneticmodification and altered physiology. The proteins involved in pathways related to respiration, glycolysis and oxidative stress were not signifcantly changed in transgenic plants as compared to untransformed genotype, which indicate a lower metabolic perturbation under drought of the engineered genotype. The transgenic plants may have adopted a mechanism of drought tolerance by accumulating osmotically active solutes in the cell. As evidenced by the metabolic profiles, the accumulation of nine primary amino acids by protein degradation maintained the cellular turgor in the transgenic genotype under drought conditions. Thus, this mechanism of protection may cause the physiological activities including photosynthesis to be active under drought conditions.
机译:干旱是限制农业生产力的主要制约因素之一。一些因素包括气候变化和种植面积,表明需要开发耐旱基因型。除了其保护作用外部的特异性网状物(ER)应激,我们之前已经表明,分子伴侣结合蛋白(BIP)参与对渗透胁迫的反应并促进耐旱性。在此,我们通过2de-ms和gc / ms分析了BIP过度转基因大豆植物的蛋白质组学和代谢谱和在干旱条件下的相应的未改变线。与灌溉和非灌溉条件下的未经过度形成的植物相比,转基因植物显示出较低水平的隔离酸和茉莉酸。相反,转基因系中的水杨酸水平高于未转化的线,其与这些植物激素介导的拮抗反应一致。转基因植物呈现出较高丰富的光合作用蛋白质,这使得证明这些转基因植物可能在干旱条件下存活,因为它们的遗传化和改变的生理学。与未转化的基因型相比,与呼吸呼吸,糖酵解和氧化应激相关的途径,糖醇分解和氧化应激相关的蛋白质在转基因植物中没有显着改变,这表明在工程化学型的干旱下较低的代谢扰动。通过在细胞中积累渗透压活性溶质,转基因植物可能已经采用了干旱耐受的机理。如代谢型材所证明的,蛋白质劣化的九次初级氨基酸的积累在干旱条件下将细胞Turgor保持在转基因基因型中。因此,这种保护机制可能导致生理活性,包括在干旱条件下活跃的光合作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号