首页> 外文期刊>Physics Reports: A Review Section of Physics Letters (Section C) >The degree of fine-tuning in our universe - and others
【24h】

The degree of fine-tuning in our universe - and others

机译:我们宇宙中的微调程度 - 和其他人

获取原文
获取外文期刊封面目录资料

摘要

Both the fundamental constants that describe the laws of physics and the cosmological parameters that determine the properties of our universe must fall within a range of values in order for the cosmos to develop astrophysical structures and ultimately support life. This paper reviews the current constraints on these quantities. The discussion starts with an assessment of the parameters that are allowed to vary. The standard model of particle physics contains both coupling constants (alpha, alpha(s), alpha(w)) and particle masses (m(u), m(d), m(e)), and the allowed ranges of these parameters are discussed first. We then consider cosmological parameters, including the total energy density of the universe (Omega), the contribution from vacuum energy (rho(Lambda)), the baryon-to-photon ratio (eta), the dark matter contribution (delta), and the amplitude of primordial density fluctuations (Q). These quantities are constrained by the requirements that the universe lives for a sufficiently long time, emerges from the epoch of Big Bang Nucleosynthesis with an acceptable chemical composition, and can successfully produce large scale structures such as galaxies. On smaller scales, stars and planets must be able to form and function. The stars must be sufficiently long-lived, have high enough surface temperatures, and have smaller masses than their host galaxies. The planets must be massive enough to hold onto an atmosphere, yet small enough to remain non-degenerate, and contain enough particles to support a biosphere of sufficient complexity. These requirements place constraints on the gravitational structure constant (alpha(G)), the fine structure constant (alpha), and composite parameters (C-*) that specify nuclear reaction rates. We then consider specific instances of possible fine-tuning in stellar nucleosynthesis, including the triple alpha reaction that produces carbon, the case of unstable deuterium, and the possibility of stable diprotons. For all of the issues outli
机译:描述了物理法律和确定宇宙属性的宇宙学参数的基本常数必须落入一系列价值范围内,以便宇宙开发天体物理结构并最终支持生活。本文审查了对这些数量的当前约束。讨论开始评估允许变化的参数。颗粒物理的标准模型含有偶联常数(α,α(α,α(w))和粒子质量(m(u),m(d),m(e))和这些参数的允许范围首先讨论。然后,我们考虑宇宙学参数,包括宇宙的总能量密度(ω),真空能量(rho(λ))的贡献,甲芳至光子比(ETA),暗物质贡献(Delta)和原始密度波动的幅度(Q)。这些数量受到宇宙的要求足够长时间的要求,从大爆炸核酸的时期与可接受的化学成分出现,并且可以成功地生产大规模结构,例如星系。在较小的尺度上,星星和行星必须能够形成和功能。星星必须足够长,具有足够高的表面温度,并且具有比其宿主星系更小的群众。行星必须足够大于容纳气氛,但足够小以保持不脱果,并且含有足够的颗粒以支持足够复杂性的生物圈。这些要求在指定核反应率的重力结构常数(α(g)),细结构常数(α)和复合参数(C- *)上的限制。然后,我们考虑在恒星核酸中可能进行微调的特定情况,包括产生碳,不稳定的氘的情况的三α反应,以及稳定的二水晶的可能性。对于所有问题来源

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号