...
首页> 外文期刊>Philosophical Transactions of the Royal Society of London, Series B. Biological Sciences >Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas
【24h】

Why put up with immunity when there is resistance: an excursion into the population and evolutionary dynamics of restriction-modification and CRISPR-Cas

机译:当有抵抗时为什么忍受免疫:延迟进入限制性修改和CRISPR-CAS的人口和进化动态

获取原文
获取原文并翻译 | 示例

摘要

Bacteria can readily generate mutations that prevent bacteriophage (phage) adsorption and thus make bacteria resistant to infections with these viruses. Nevertheless, the majority of bacteria carry complex innate and/or adaptive immune systems: restriction-modification (RM) and CRISPR-Cas, respectively. Both RM and CRISPR-Cas are commonly assumed to have evolved and be maintained to protect bacteria from succumbing to infections with lytic phage. Using mathematical models and computer simulations, we explore the conditions under which selection mediated by lytic phage will favour such complex innate and adaptive immune systems, as opposed to simple envelope resistance. The results of our analysis suggest that when populations of bacteria are confronted with lytic phage: (i) In the absence of immunity, resistance to even multiple bacteriophage species with independent receptors can evolve readily. (ii) RM immunity can benefit bacteria by preventing phage from invading established bacterial populations and particularly so when there are multiple bacteriophage species adsorbing to different receptors. (iii) Whether CRISPR-Cas immunity will prevail over envelope resistance depends critically on the number of steps in the coevolutionary arms race between the bacteria-acquiring spacers and the phage-generating CRISPR-escape mutants. We discuss the implications of these results in the context of the evolution and maintenance of RM and CRISPR-Cas and highlight fundamental questions that remain unanswered.
机译:细菌可以容易地产生防止噬菌体(噬菌体)吸附的突变,从而使细菌与这些病毒感染抗菌。然而,大多数细菌携带复杂的先天和/或自适应免疫系统:限制性修饰(RM)和CRISPR-CAS。通常假设RM和CRISPR-CAS都经过发展并保持以保护细菌免受含裂变噬菌体的感染。使用数学模型和计算机模拟,我们探讨了裂解噬菌体介导的选择将有利于这种复杂的先天和自适应免疫系统的条件,而不是简单的包络阻力。我们的分析结果表明,当细菌的群体面临裂解噬菌体时:(i)在没有免疫的情况下,甚至具有独立受体的多种噬菌体物种的抵抗力可以容易地发展。 (ii)RM免疫可以通过防止血液侵袭已建立的细菌种群,特别是当有多种噬菌体物种吸附到不同的受体时,抗菌免疫力。 (iii)CRISPR-CAS抗扰度是否将普遍存在的信封阻力尺寸主要取决于细菌获取间隔物和噬菌体产生CRISPR-efcies突变体之间的共轭臂竞争中的步骤数量。我们讨论了这些结果在RM和CRISPR-CAS的演变和维护的背景下的影响,并突出了仍未答复的基本问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号