首页> 外文期刊>Structural and multidisciplinary optimization >Probabilistic analytical target cascading using kernel density estimation for accurate uncertainty propagation
【24h】

Probabilistic analytical target cascading using kernel density estimation for accurate uncertainty propagation

机译:概率分析目标级联使用核密度估计进行准确的不确定传播

获取原文
获取原文并翻译 | 示例

摘要

Probabilistic analytical target cascading (PATC) has been developed to incorporate uncertainty of random variables in a hierarchical multilevel system using the framework of ATC. In the decomposed ATC structure, consistency between linked subsystems has to be guaranteed through individual subsystem optimizations employing special coordination strategies such as augmented Lagrangian coordination (ALC). However, the consistency in PATC has to be attained exploiting uncertainty quantification and propagation of interrelated linking variables that are the major concern of PATC and uncertainty-based multidisciplinary design optimization (UMDO). In previous studies, the consistency of linking variables is assured by matching statistical moments under the normality assumption. However, it can induce significant error when the linking variable to be quantified is highly nonlinear and non-normal. In addition, reliability estimated from statistical moments may be inaccurate in each optimization of the subsystem. To tackle the challenges, we propose the sampling-based PATC using multivariate kernel density estimation (KDE). The framework of reliability-based design optimization (RBDO) using sampling methods is adopted in individual optimizations of subsystems in the presence of uncertainty. The uncertainty quantification of linking variables equivalent to intermediate random responses can be achieved by multivariate KDE to account for correlation between linking variables. The constructed KDE based on finite samples of the linking variables can provide accurate statistical representations to linked subsystems and thus be utilized as probability density function (PDF) of linking variables in individual sampling-based RBDOs. Stochastic sensitivity analysis with respect to multivariate KDE is further developed to provide an accurate sensitivity of reliability during the RBDO. The proposed sampling-based PATC using KDE facilitates efficient and accurate procedures to obtain a system optimum in PATC, and the mathematical examples and roof assembly optimization using finite element analysis (FEA) are used to demonstrate the effectiveness of the proposed approach.
机译:已经开发出概率分析目标级联(PATC)以利用ATC框架在分层多级系统中纳入随机变量的不确定性。在分解的ATC结构中,必须通过采用特殊协调策略(如增强拉格朗日协调(ALC))的各个子系统优化来保证链接子系统之间的一致性。然而,必须实现PATC的一致性利用相互关联的链接变量的不确定性量化和传播,这是PATC和基于不确定性的多学科设计优化(UMDO)的主要关注点。在先前的研究中,通过在正常假设下匹配统计时刻来确保链接变量的一致性。然而,当要量化的链接变量高度非线性和非正常时,它可以引起重大错误。此外,在子系统的每个优化中可能不准确地估计的可靠性。为了解决挑战,我们使用多元核密度估计(KDE)提出基于采样的PATC。基于可靠性的设计优化(RBDO)使用采样方法的框架在存在不确定性存在下的子系统的各个优化中采用。可以通过多变量KDE来实现相当于中间随机响应的链接变量的不确定性定量,以解释链接变量之间的相关性。基于链接变量的有限样本的构建的KDE可以为链接的子系统提供准确的统计表示,从而用作各个采样的RBDO中链接变量的概率密度函数(PDF)。进一步开发了关于多元kDE的随机敏感性分析,以在RBDO期间提供对可靠性的准确敏感性。使用KDE的所提出的基于采样的PATC促进了高效和准确的程序,以获得PATC中最佳的系统,并且使用有限元分析(FEA)的数学例子和屋顶组件优化用于证明所提出的方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号