首页> 外文期刊>Stem Cells >p53-TP53-Induced Glycolysis Regulator Mediated Glycolytic Suppression Attenuates DNA Damage and Genomic Instability in Fanconi Anemia Hematopoietic Stem Cells
【24h】

p53-TP53-Induced Glycolysis Regulator Mediated Glycolytic Suppression Attenuates DNA Damage and Genomic Instability in Fanconi Anemia Hematopoietic Stem Cells

机译:P53-TP53诱导的糖酵解调节剂介导的糖酵解抑制抑制FANCONI贫血造血干细胞的DNA损伤和基因组不稳定性

获取原文
获取原文并翻译 | 示例
           

摘要

Emerging evidence has shown that resting quiescent hematopoietic stem cells (HSCs) prefer to utilize anaerobic glycolysis rather than mitochondrial respiration for energy production. Compelling evidence has also revealed that altered metabolic energetics in HSCs underlies the onset of certain blood diseases; however, the mechanisms responsible for energetic reprogramming remain elusive. We recently found that Fanconi anemia (FA) HSCs in their resting state are more dependent on mitochondrial respiration for energy metabolism than on glycolysis. In the present study, we investigated the role of deficient glycolysis in FA HSC maintenance. We observed significantly reduced glucose consumption, lactate production, and ATP production in HSCs but not in the less primitive multipotent progenitors or restricted hematopoietic progenitors of Fanca(-/-) and Fancc(-/-) mice compared with that of wild-type mice, which was associated with an overactivated p53 and TP53-induced glycolysis regulator, the TIGAR-mediated metabolic axis. We utilized Fanca(-/-) HSCs deficient for p53 to show that the p53-TIGAR axis suppressed glycolysis in FA HSCs, leading to enhanced pentose phosphate pathway and cellular antioxidant function and, consequently, reduced DNA damage and attenuated HSC exhaustion. Furthermore, by using Fanca(-/-) HSCs carrying the separation-of-function mutant p53(R172P) transgene that selectively impairs the p53 function in apoptosis but not cell-cycle control, we demonstrated that the cell-cycle function of p53 was not required for glycolytic suppression in FA HSCs. Finally, ectopic expression of the glycolytic rate-limiting enzyme PFKFB3 specifically antagonized p53-TIGAR-mediated metabolic reprogramming in FA HSCs. Together, our results suggest that p53-TIGAR metabolic axis-mediated glycolytic suppression may play a compensatory role in attenuating DNA damage and proliferative exhaustion in FA HSCs. Stem Cells 2019;37:937-947
机译:出现的证据表明,静止静止造血干细胞(HSC)优选利用厌氧糖醇分解而不是线粒体呼吸的能量产生。令人信服的证据还透露,HSCs的代谢能量改变是某些血液疾病的发病;然而,负责能量重编程的机制仍然难以捉摸。我们最近发现,休息状态中的贫血(FA)HSCs更依赖于能量代谢的线粒体呼吸而不是糖醇。在本研究中,我们调查了在FA HSC维护中缺乏糖酵解的作用。在HSC中观察到显着降低了葡萄糖消费,乳酸盐产生和ATP产量,但与野生型小鼠相比,FANCA( - / - )和FANCC( - / - / - )小鼠的原始多能祖细胞或受限制的造血祖细胞,其与过增值的P53和TP53诱导的糖醇分解调节剂,Tigar介导的代谢轴相关。我们利用Fanca( - / - )HSCS缺乏P53,表明P53-Tigar轴在FA HSC中抑制了糖酵解,导致增强的磷酸磷酸盐途径和细胞抗氧化功能,并且因此,减少了DNA损伤并减弱了HSC疲劳。此外,通过使用携带函数分离突变体P53(R172P)转基因的Fanca(/ - - )HSC选择性地损害细胞凋亡的P53功能而不是细胞周期控制,我们证明了P53的细胞周期功能FA HSC中不需要糖酵解抑制。最后,糖酵解率限制酶PFKFB3的异位表达特异性拮抗P53-Tigar介导的FA HSC中的代谢重编程。我们的结果表明,P53-Tigar代谢轴介导的糖浆抑制可能在衰减FA HSC中的DNA损伤和增殖疲劳方面发挥补偿作用。 2019年干细胞; 37:937-947

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号