首页> 外文期刊>SIGKDD explorations >PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction
【24h】

PME: Projected Metric Embedding on Heterogeneous Networks for Link Prediction

机译:PME:在异构网络上嵌入的预计度量标准进行链路预测

获取原文
获取原文并翻译 | 示例

摘要

Heterogenous information network embedding aims to embed het- erogenous information networks (HINs) into low-dimensional spaces, in which each vertex is represented as a low-dimensional vector, and both global and local network structures in the original space are preserved. However, most of existing heterogenous information network embedding models adopt the dot product to measure the proximity in the low dimensional space, and thus they can only preserve the first-order proximity and are insufficient to capture the global structure. Compared with homogenous information net- works, there are multiple types of links (i.e., multiple relations) in HINs, and the link distribution w.r.t relations is highly skewed. To address the above challenging issues, we propose a novel het- erogenous information network embedding model PME based on the metric learning to capture both first-order and second-order proximities in a unified way. To alleviate the potential geometrical inflexibility of existing metric learning approaches, we propose to build object and relation embeddings in separate object space and relation spaces rather than in a common space. Afterwards, we learn embeddings by firstly projecting vertices from object space to corresponding relation space and then calculate the proximity between projected vertices. To overcome the heavy skewness of the link distribution w.r.t relations and avoid "over-sampling" or "under-sampling" for each relation, we propose a novel loss-aware adaptive sampling approach for the model optimization. Extensive experiments have been conducted on a large-scale HIN dataset, and the experimental results show superiority of our proposed PME model in terms of prediction accuracy and scalability.
机译:异因信息网络嵌入旨在将HET-杂交信息网络(HIN)嵌入到低维空间中,其中每个顶点表示为低维向量,并且保留原始空间中的全局和本地网络结构。然而,大多数现有的异构信息网络嵌入模型采用圆点产品来测量低尺寸空间的接近度,因此它们只能保留一阶邻近并且不足以捕获全局结构。与均匀信息网络相比,素质中有多种类型的链路(即,多个关系),链接分布W.R.T关系非常偏斜。为了解决上述具有挑战性的问题,我们提出了一种基于度量学习的新颖性信息网络嵌入模型PME,以统一的方式捕获一阶和二阶近距离。为了减轻现有度量学习方法的潜在几何不灵活性,我们建议在单独的物体空间和关系空间中构建对象和关系嵌入,而不是在公共空间中。之后,我们首先将嵌入从物镜空间从对象空间投射到对应的关系空间,然后计算投影顶点之间的接近度。为了克服链路分布的沉重偏斜,对每个关系的关系并避免“过度采样”或“欠采样”,我们提出了一种用于模型优化的新型损失感知自适应采样方法。在大规模的HIN DataSet上进行了广泛的实验,实验结果在预测准确性和可扩展性方面表现出我们所提出的PME模型的优越性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号