...
首页> 外文期刊>SIAM journal on applied dynamical systems >Dressler's theory for curved topography flows: iterative derivation, transcritical flow solutions and higher-order wave-type equations
【24h】

Dressler's theory for curved topography flows: iterative derivation, transcritical flow solutions and higher-order wave-type equations

机译:德莱特勒的弯曲地形流动理论流动:迭代衍生,跨临界流溶液和高阶波型方程

获取原文
获取原文并翻译 | 示例
           

摘要

The Dressler equations are a system of two non-linear partial differential equations for shallow fluid flows over curved topography. The theory originated from an asymptotic stretching method formulating the equations of motion in terrain-fitted curvilinear coordinates. Apparently, these equations failed to produce a transcritical flow profile changing from sub- to supercritical flow conditions. Further, wave-like motions over a flat bottom are excluded because the bed-normal velocity component is not accounted for. However, the theory was found relevant for several environmental flow problems including density currents over mountains and valleys, seepage flow in hillslope hydrology, the development of antidunes, the formation of geological deposits from hyper-concentrated flows, and shallow-water flow modeling in hydraulics. In this work, Dressler's theory is developed in an alternative way by a systematic iteration of the stream and potential functions in terrain-fitted coordinates. The first iteration was found to be the former Dressler's theory, whereas a second iteration of the governing equations results in velocity components generalizing Dressler's theory to wave-like motion. Dressler's first-order theory produces a transcritical flow solution over topography only if the total head is fixed by a minimum value of the specific energy at the transition point. However, the theory deviates from measurements under subcritical flow conditions, given that the bed-normal velocity component is significant. A second iteration to the velocity field was used to produce a second-order differential equation that resembles the cnoidal-wave theory. It accurately produces flow over an obstacle including the critical point and the minimum specific energy as part of the numerical solution. The new cnoidal-wave model compares well with the theory of a Cosserat surface for directed fluid sheets, whereas the Saint-Venant theory appears to be poor.
机译:凹形方程是两个非线性偏微分方程的系统,用于浅流体流过弯曲地形。该理论源自渐近拉伸方法,其制定了地形曲线坐标中的运动方程。显然,这些等式未能产生从子到超临界流动条件改变的跨临界流程轮廓。此外,排除在平底上的波状运动,因为床正常速度分量未被占。然而,该理论被发现与山脉和山谷的密度电流包括少数环境流动问题相关,山坡水文中的渗流流动,安天然气的发展,从超集中流动的形成,以及液压浅水流量建模的地质沉积物。在这项工作中,德莱勒的理论是通过在地形坐标中的流和潜在功能的系统迭代以替代方式开发。第一次迭代被发现是前德拉特勒的理论,而控制方程的第二次迭代导致速度分量概括德拉特勒理论以波浪类似的运动。德莱德勒的一阶理论才能在总体通过过渡点处的特定能量的最小值固定,仅在地形上产生跨临界流量溶液。然而,该理论偏离亚临界流动条件下的测量值,因为床正常速度分量显着。第二次迭代用于产生类似于CNOID-波理论的二阶微分方程。它可以精确地产生流过的障碍物,包括临界点和最小特定能量作为数值解决方案的一部分。新的CNOID-WAVE模型与针对导向流体板的Cosserat表面的理论相比很好地比较,而圣文气理论似乎差。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号