...
首页> 外文期刊>Seminars in cell and developmental biology >The potential application of genome editing by using CRISPR/Cas9, and its engineered and ortholog variants for studying the transcription factors involved in the maintenance of phosphate homeostasis in model plants
【24h】

The potential application of genome editing by using CRISPR/Cas9, and its engineered and ortholog variants for studying the transcription factors involved in the maintenance of phosphate homeostasis in model plants

机译:基因组编辑通过使用CRISPR / CAS9的潜在应用,以及其用于研究在模型植物中维持磷酸盐稳态的转录因子的工程和矫正器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Phosphorus (P), an essential macronutrient, is pivotal for growth and development of plants. Availability of phosphate (Pi), the only assimilable P, is often suboptimal in rhizospheres. Pi deficiency triggers an array of spatiotemporal adaptive responses including the differential regulation of several transcription factors (TFs). Studies on MYB TF PHR1 in Arabidopsis thaliana (Arabidopsis) and its orthologs OsPHRs in Oryza sativa (rice) have provided empirical evidence of their significant roles in the maintenance of Pi homeostasis. Since the functional characterization of PHR1 in 2001, several other TFs have now been identified in these model plants. This raised a pertinent question whether there are any likely interactions across these TFs. Clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has provided an attractive paradigm for editing genome in plants. Here, we review the applications and challenges of this technique for genome editing of the TFs for deciphering the function and plausible interactions across them. This technology could thus provide a much-needed fillip towards engineering TFs for generating Pi use efficient plants for sustainable agriculture. Furthermore, we contemplate whether this technology could be a viable alternative to the controversial genetically modified (GM) rice or it may also eventually embroil into a limbo.
机译:磷(P)是必不可少的Macronurient,是植物生长和发育的关键。磷酸盐(PI)的可用性,唯一可同化的P,通常是根转主的次优。 PI缺乏触发了一系列时空自适应响应,包括几种转录因子(TFS)的差异调节。在拟南芥(拟南芥)和其Orttha Sativa(米饭)中的MyB TF PHR1的研究已经提供了对PI稳态维持的显着作用的经验证据。由于2001年的PHR1的功能表征,现在已经在这些模型植物中识别了几种其他TFS。这提出了一个有关这些TFS的有可能互动的相关问题。聚集经常间隙的短语重复(CRISPR)/ CRISPR相关蛋白质9(CAS9)系统提供了一种用于在植物中编辑基因组的吸引力范式。在这里,我们审查了这种技术的应用和挑战,用于如何解密TF的基因组编辑,以解密它们的功能和合理的相互作用。因此,该技术可以为工程TFS提供急需的Flinip,用于为可持续农业产生PI使用高效植物。此外,我们考虑了这项技术是否可以是对争议的遗传修饰(GM)米的可行替代品,或者它也可能最终刺激到稳定状态。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号