首页> 外文期刊>Operations Research: The Journal of the Operations Research Society of America >Dynamics of Drug Resistance: Optimal Control of an Infectious Disease
【24h】

Dynamics of Drug Resistance: Optimal Control of an Infectious Disease

机译:耐药性的动力学:传染病的最佳控制

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Antimicrobial resistance is a significant public health threat. In the United States alone, two million people are infected, and 23,000 die each year from antibiotic-resistant bacterial infections. In many cases, infections are resistant to all but a few remaining drugs. We examine the case in which a single drug remains and solve for the optimal treatment policy for a susceptible-infected-susceptible infectious disease model, incorporating the effects of drug resistance. The problem is formulated as an optimal control problem with two continuous state variables: the disease prevalence and drug's "quality" (the fraction of infections that are drug-susceptible). The decision maker's objective is to minimize the discounted cost of the disease to society over an infinite horizon. We provide a new generalizable solution approach that allows us to thoroughly characterize the optimal treatment policy analytically. We prove that the optimal treatment policy is a bang-bang policy with a single switching time. The action/inaction regions can be described by a single boundary that is strictly increasing when viewed as a function of drug quality, indicating that, when the disease transmission rate is constant, the policy of withholding treatment to preserve the drug for a potentially more serious future outbreak is not optimal. We show that the optimal value function and/or its derivatives are neither C-1 nor Lipschitz continuous, suggesting that numerical approaches to this family of dynamic infectious disease models may not be computationally stable. Furthermore, we demonstrate that relaxing the standard assumption of a constant disease transmission rate can fundamentally change the shape of the action region, add a singular arc to the optimal control, and make preserving the drug for a serious outbreak optimal. In addition, we apply our framework to the case of antibiotic-resistant gonorrhea.
机译:抗微生物抗性是一个重要的公共卫生威胁。仅在美国,每年有两百万人被感染,每年有23,000人死于抗生素的细菌感染。在许多情况下,感染对所有剩余的药物都具有抗性。我们研究了单一药物仍然存在的情况,并解决对敏感感染的易感性传染病模型的最佳治疗政策,包括耐药性的影响。该问题被制定为具有两个连续状态变量的最佳控制问题:疾病患病率和药物的“质量”(毒性易感的感染部分)。决策者的目标是通过无限地平线将疾病的折扣成本降至最低。我们提供了一种新的最可推广的解决方案方法,使我们能够在分析上完全表征最佳治疗政策。我们证明了最佳治疗政策是一个具有单一切换时间的Bang-Bang政策。当作为药物质量的函数观察时,可以通过严格增加的单个边界来描述动作/不动区域,表明,当疾病传输速率是恒定的时,扣留治疗的政策以保护药物的潜在更严重未来的爆发不是最佳的。我们表明最佳价值函数和/或其衍生物既不连续,也仍然是C-1和Lipschitz的连续,这表明该系列动态传染病模型的数值方法可能无法计算地稳定。此外,我们证明,放松恒定疾病传输速率的标准假设可以从根本上改变动作区域的形状,为最佳控制添加一个奇异的弧,并使药物保持严重的爆发。此外,我们将我们的框架应用于抗生素毒性淋病的情况。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号