首页> 外文期刊>Reaction Chemistry & Engineering >Arsenic immobilization as crystalline scorodite by gas-diffusion electrocrystallization
【24h】

Arsenic immobilization as crystalline scorodite by gas-diffusion electrocrystallization

机译:通过气扩散电镀化砷固定作为晶体焦岩

获取原文
获取原文并翻译 | 示例
           

摘要

The safe immobilization of arsenic present in liquids is a key environmental challenge due to the inherent toxicity of arsenic. This immobilization is mostly restricted by the application of chemicals and several stages of oxidation and precipitation. Although the formation of bioscorodite is a greener alternative, it is intensive in the use of energy for aeration, and it is costly due to nutrient addition. The electrochemically- driven crystallization of arsenic into scorodite is proposed here to overcome these limitations. We disclose gas-diffusion electrocrystallization (GDEx) for the immobilization of arsenic into highly crystalline scorodite (FeAsO4·2H2O) by the production of oxidizing substances ( ,H2O2) on gas-diffusion electrodes. GDEx yielded an exceptional arsenic immobilization efficiency of up to 70% without the use of any primary minerals or seed crystals. At 70 °CandusingAs 3+ as the precursor, polydisperse micrometric scorodite particles were obtained (from fine particles of <1 μm to large particles of ~5 μm). In contrast, fine micrometric particles of <1 μm were achieved using As 5+ as the precursor. Using one-pot and one-step GDEx enabled the synthesis of scorodite that was 14 times less soluble than required for stable scorodite disposal. Current chemical oxidation-precipitation processes use two separate reactors, including the oxidation of As 3+ to As 5+, and then the precipitation of the As 5+ with Fe3+ to generate scorodite at a temperature higher than 90 °C. In contrast, the new GDEx approach combines both reactors into one to produce crystalline scorodite at 50 °C, hence reducing energy requirements and chemical footprint.
机译:由于砷的固有毒性,液体存在于液体中的安全固定是一种关键的环境挑战。这种固定化主要受采用化学品和氧化和沉淀的几个阶段的限制。虽然Bioscorodite的形成是一种更环保的替代品,但它在使用能量的曝气时是密集的,并且由于营养增不市是昂贵的。提出了砷进入焦岩的电化学驱动的结晶以克服这些限制。我们公开了通过在气扩散电极上产生氧化物质(H 2 O 2)的氧化物质(H2O2)来将砷固定到高结晶焦岩(FEAO4·2H2O)中的气体扩散电镀层(GDEX)。 GDEX在不使用任何主要矿物质或种子晶体的情况下产生高达70%的特殊砷固定效率。在70°Candusingas 3+作为前体,获得多分散的微米焦岩颗粒(从1μm的细颗粒到约5μm的大颗粒)。相反,使用As 5+作为前体实现的细微微米粒子为<1μm。使用单壶和一步GDEX使得Scorodite的合成比稳定的透明石处理所需的易溶性减少14倍。目前的化学氧化 - 沉淀过程使用两种单独的反应器,包括氧化为3+至As 5+,然后用Fe 3 +沉淀为5+,以在高于90℃的温度下产生焦散岩。相反,新的GDEX方法将两个反应器组合成一个在50℃下产生晶体焦点,从而减少能量需求和化学足迹。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号