...
首页> 外文期刊>Neural computing & applications >Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface
【24h】

Heat and mass transport phenomena of nanoparticles on time-dependent flow of Williamson fluid towards heated surface

机译:纳米粒子的热量和质量传递现象对加热表面的威廉森液的时间依赖性流动

获取原文
获取原文并翻译 | 示例

摘要

An enhancement in the thermal conductivity of conventional base fluids has been a topic of great concern in recent years. An effective way to improve the heat transfer rate of conventional base fluids is the suspension of solid nanoparticles. In this framework, a theoretical study is performed to analyse the heat and mass transfer performance in the time-dependent flow of non-Newtonian Williamson nanofluid towards a stretching surface. There exist several studies focusing on the flow of Williamson fluid by assuming zero infinite shear rate viscosity. Nonetheless, there is a lack of knowledge regarding mathematical formulation for two-dimensional flow of the Williamson fluid by taking into account the impacts of infinite shear rate viscosity. In the current review, the Buongiorno model for nanofluids associated with Brownian motion and thermophoretic diffusion is employed to describe the heat transfer performance of nanofluids. The thermal system is composed of flow velocity, temperature, and nanoparticles concentration fields, respectively. The governing dimensionless equations are solved numerically by Runge-Kutta Fehlberg integration method. The numerical results are compared with published results and are found to have an excellent agreement. Effects of numerous dimensionless parameters on velocity, temperature, and nanoparticle concentration field together with the skin friction coefficient and rates of heat and mass transfer are presented with the assistance of graphical and tabular illustrations. With this analysis, we reached that the thermal boundary layer thickness as well as the nanofluids temperature has higher values with increase in thermophoresis and Brownian motion. It is further observed that the rate of heat transfer is significantly raised with an increment in Prandtl number and unsteadiness parameter.
机译:近年来,常规基础流体的导热率的增强是一个非常关注的主题。提高常规基础流体传热速率的有效方法是固体纳米颗粒的悬浮液。在该框架中,进行了理论研究,以分析非牛顿威廉姆森纳米流体朝向拉伸表面的时间依赖性流动的热量和传质性能。通过假设零无限剪切速率粘度,存在若干研究专注于威廉森流体的流动。尽管如此,考虑到无限剪切速率粘度的影响,缺乏关于威廉森流体的二维流动的数学制剂的数学制剂的知识。在目前的评论中,采用与褐色运动和热渗透扩散相关的纳米流体的Buongiorno模型来描述纳米流体的传热性能。热系统分别由流速,温度和纳米颗粒浓度场组成。通过Runge-Kutta Fehlberg集成方法在数值上解决了控制无量纲方程。将数值结果与已发表的结果进行比较,并被发现具有很好的协议。在图解和表格插图的帮助下,提出了许多无量纲参数对速度,温度和纳米颗粒浓度场的影响以及热和传质的速度和传质。通过这种分析,我们达到了热边界层厚度以及纳米流体温度随着耐热度和布朗运动的增加而具有更高的值。进一步观察到,热传递速率显着升高,普兰特数量和不稳定参数增加。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号