Abstract <![CDATA[Charge separation and transport in La<ce:inf loc='post'>0.6</ce:inf>Sr<ce:inf loc='post'>0.4</ce:inf>Co<ce:inf loc='post'>0.2</ce:inf>Fe<ce:inf loc='post'>0.8</ce:inf>O<ce:inf loc='post'>3-δ</ce:inf> and ion-doping ceria heterostructure material for new generation fuel cell]]>
首页> 外文期刊>Nano Energy >0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell]]>
【24h】

0.6Sr0.4Co0.2Fe0.8O3-δ and ion-doping ceria heterostructure material for new generation fuel cell]]>

机译:<!“inf place =”post“> 0.2 fe 0.8 o 3-Δ< / CE:INF>新一代燃料电池的离子掺杂二氧化铈异质结构材料]]>

获取原文
获取原文并翻译 | 示例
       

摘要

Abstract Functionalities in heterostructure oxide material interfaces are an emerging subject resulting in extraordinary material properties such as great enhancement in the ionic conductivity in a heterostructure between a semiconductor SrTiO3 and an ionic conductor YSZ (yttrium stabilized zirconia), which can be expected to have a profound effect in oxygen ion conductors and solid oxide fuel cells . Hereby we report a semiconductor-ionic heterostructure La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) and Sm-Ca co-doped ceria (SCDC) material possessing unique properties for new generation fuel cells using semiconductor-ionic heterostructure composite materials. The LSCF-SCDC system contains both ionic and electronic conductivities, above 0.1S/cm, but used as the electrolyte for the fuel cell it has displayed promising performance in terms of OCV (above 1.0V) and enhanced power density (ca. 1000mW/cm2 at 550°C). Such high electronic conduction in the electrolyte membrane does not cause any short-circuiting problem in the device, instead delivering enhanced power output. Thus, the study of the charge separation/transport and electron blocking mechanism is crucial and can play a vital role in understanding the resulting physical properties and physics of the materials and device. With atomic level resolution ARM 200CF microscope equipped with the electron energy-loss spectroscopy (EELS) analysis, we can char
机译:<![cdata [ 抽象 异质结构氧化物材料界面的功能是一种新兴的主体,导致非凡的材料特性,例如半导体SRTIO之间的异质结构中的离子电导率的显着增强 3> 3 和离子导体YSZ(钇稳定的氧化锆),这可以预期在氧离子导体和固体氧化物燃料电池中具有深远的影响。因此,我们报告了半导体 - 离子异质结构La 0.6 SR 0.4 CO 0.2 FE 0.8 O 3-Δ (LSCF)和SM-CA共掺杂的二氧化碳(SCDC)材料具有使用半导体离子异质结构复合材料的新一代燃料电池特性的独特性质。 LSCF-SCDC系统含有离子和电子电导率,高于0.1 V)和增强的功率密度(CA.1000 MW / CM 2 在550 °C)。电解质膜中的这种高电子传导不会在装置中引起任何短路问题,而是提供增强的功率输出。因此,对电荷分离/传输和电子阻挡机构的研究至关重要,并且可以在理解所得物理性质和物理和装置的物理学中起着至关重要的作用。用原子水平分辨率臂200CF显微镜配备电子能损光谱(EELS)分析,我们可以进行

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号