...
首页> 外文期刊>Nano Energy >Low-temperature epitaxial growth of high-quality GaON films on ZnO nanowires for superior photoelectrochemical water splitting
【24h】

Low-temperature epitaxial growth of high-quality GaON films on ZnO nanowires for superior photoelectrochemical water splitting

机译:ZnO纳米线的低温外延生长,用于优质光电化学水分裂

获取原文
获取原文并翻译 | 示例

摘要

Gallium oxynitride (GaON) is an emerging material suitable as a key component to build efficient hetero-structures for photoelectrochemical (PEC) water splitting. However, the great difficulty in controlled growth of GaON films limits their applications. This study developed a novel method for depositing highly uniform GaON films by a one-step co-deposition process via plasma-enhanced atomic layer deposition (ALD). Importantly, this material presents high-quality epitaxial growth behavior on ZnO nanowires (NWs) only at 200 degrees C to construct ZnO-GaON core-shell NWs with different shell thickness (5-60 nm). Benefiting from the precisely controlled ALD technique, thickness-dependent PEC performance and its mechanism were studied deeply. It was found the ZnO-GaON NWs with an optimum shell thickness (similar to 40 nm) presented largest electric field enhancement and light-trapping ability, thus greatly improved the photocurrent from similar to 0.24 (pristine ZnO) to 2.25 mA/cm(2) at 1.23 V versus reversible hydrogen electrode. Meanwhile, this structure presents an ultrahigh incident photon-to-current conversion efficiency of similar to 90% in the UV region. A comparative study assesses the ultrahigh carrier density (similar to 10(21) cm(-3)) and suitable bandgap of GaON relative to GaN and Ga2O3, revealing a higher photocurrent for the ZnO-GaON core-shell NWs. These encouraging results indicated that higher PEC performance is worthy expected upon optimization of the nitrogen and oxygen concentrations and by combining with narrow bandgap materials in further studies.
机译:氧氮化镓(Gaon)是一种适合作为一种关键组分的新兴材料,以构建光电子化学(PEC)水分裂的有效异质结构。然而,Gaon薄膜控制增长的巨大困难限制了其应用。该研究开发了一种通过通过等离子体增强的原子层沉积(ALD)通过一步共沉积过程沉积高度均匀的高沉膜膜的新方法。重要的是,该材料在ZnO纳米线(NWS)上仅以200℃呈现高质量的外延生长行为,以构建具有不同壳厚度(5-60nm)的Zno-Gaon核心壳NW。从精确控制的ALD技术中受益,深入研究厚度依赖性PEC性能及其机制。发现具有最佳壳体厚度(类似于40nm)的Zno-GaonnWS呈现最大的电场增强和光捕集能力,从而大大改善了与0.24(原始ZnO)到2.25 mA / cm(2的光电流)在1.23 V与可逆氢电极。同时,该结构呈现超高速入射光与电流转换效率,其在UV区域中类似于90%。对比研究评估超高载流子密度(类似于10(21 )cm(-3))和相对于GaN和Ga2O3的合适的带隙,揭示了Zno-Gaon核心壳NWS的更高光电流。这些令人鼓舞的结果表明,在优化氮气和氧气浓度并通过进一步研究中的窄带材料结合来实现较高的PEC性能值。

著录项

  • 来源
    《Nano Energy》 |2019年第2019期|共10页
  • 作者单位

    Fudan Univ Sch Microelect Shanghai Inst Intelligent Elect &

    Syst State Key Lab ASIC &

    Syst Shanghai 200433 Peoples R China;

    Fudan Univ Sch Microelect Shanghai Inst Intelligent Elect &

    Syst State Key Lab ASIC &

    Syst Shanghai 200433 Peoples R China;

    Fudan Univ Sch Microelect Shanghai Inst Intelligent Elect &

    Syst State Key Lab ASIC &

    Syst Shanghai 200433 Peoples R China;

    Fudan Univ Sch Microelect Shanghai Inst Intelligent Elect &

    Syst State Key Lab ASIC &

    Syst Shanghai 200433 Peoples R China;

    Shanghai Tech Univ Sch Phys Sci &

    Technol Shanghai 201210 Peoples R China;

    Fudan Univ Sch Microelect Shanghai Inst Intelligent Elect &

    Syst State Key Lab ASIC &

    Syst Shanghai 200433 Peoples R China;

    Chinese Acad Sci Shanghai Inst Ceram State Key Lab High Performance Ceram &

    Superfine Shanghai 200050 Peoples R China;

    Saga Univ Synchrotron Light Applicat Ctr Dept Elect &

    Elect Engn Saga 8408502 Japan;

    Fudan Univ Sch Microelect Shanghai Inst Intelligent Elect &

    Syst State Key Lab ASIC &

    Syst Shanghai 200433 Peoples R China;

    Fudan Univ Sch Microelect Shanghai Inst Intelligent Elect &

    Syst State Key Lab ASIC &

    Syst Shanghai 200433 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 能源与动力工程;
  • 关键词

    Gallium oxynitride; Plasma-enhanced atomic layer deposition; Thickness-dependent photoelectrochemical performance; Epitaxial growth; Electric field intensity;

    机译:氧氮化镓;等离子体增强的原子层沉积;厚度依赖性光电化学性能;外延生长;电场强度;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号