首页> 外文期刊>Knowledge and information systems >L-p-Support vector machines for uplift modeling
【24h】

L-p-Support vector machines for uplift modeling

机译:L-P-Support向量机器用于隆起建模

获取原文
获取原文并翻译 | 示例

摘要

Uplift modeling is a branch of machine learning which aims to predict not the class itself, but the difference between the class variable behavior in two groups: treatment and control. Objects in the treatment group have been subjected to some action, while objects in the control group have not. By including the control group, it is possible to build a model which predicts the causal effect of the action for a given individual. In this paper, we present a variant of support vector machines designed specifically for uplift modeling. The SVM optimization task has been reformulated to explicitly model the difference in class behavior between two datasets. The model predicts whether a given object will have a positive, neutral or negative response to a given action, and by tuning a parameter of the model the analyst is able to influence the relative proportion of neutral predictions and thus the conservativeness of the model. Further, we extend -SVMs to the case of uplift modeling and demonstrate that they allow for a more stable selection of the size of negative, neutral and positive groups. Finally, we present quadratic and convex optimization methods for efficiently solving the two proposed optimization tasks.
机译:提升建模是机器学习的分支,旨在预测不是阶级本身,而是两组中的类变量行为之间的差异:治疗和控制。治疗组中的对象已经受到一些动作,而对照组中的物体没有。通过包括对照组,可以构建一个模型,该模型预测了对给定个体的动作的因果效应。在本文中,我们介绍了一个专门用于提升建模的支持向量机的变型。 SVM优化任务已重新修改以显式模拟两个数据集之间的类行为的差异。该模型预测给定的对象是否将对给定动作具有正,中性或负响应,并且通过调整模型的参数,分析师能够影响中性预测的相对比例,从而实现模型的保守性。此外,我们将-SVMS延伸到提升建模的情况,并证明它们允许更稳定的阴性,中性和阳性组的选择。最后,我们提出了二次和凸的优化方法,用于有效解决两个提出的优化任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号