首页> 外文期刊>Measurement Science & Technology >A real-time, high-accuracy, hardware-based integrated parameter estimator for deep space navigation and planetary radio science experiments
【24h】

A real-time, high-accuracy, hardware-based integrated parameter estimator for deep space navigation and planetary radio science experiments

机译:基于实时,高精度,基于硬件的集成参数估计,用于深空导航和行星无线电科学实验

获取原文
获取原文并翻译 | 示例
           

摘要

Real-time, high-accuracy frequency-phase estimation is the critical mission of Doppler tracking, which is a primary technique for deep space spacecraft navigation and planetary radio science experiments. Usually, the analog intermediate frequency signal is digitalized and converted to baseband by signal processing hardware platforms called digital back-ends (DBEs) and parameter estimation is performed by extra high performance computers. In this paper, a novel real-time, high-accuracy parameter estimator called a hardware-based integrated parameter estimator (HIPE) is proposed and implemented inside DBEs. An adaptive frequency tracker is proposed to make the initial signal detection, frequency tracking, and data reduction. Then a parameter estimation is sequentially obtained by a modified dechirp technique and a high-resolution spectral analysis technique called spec-zooming. Further, a folding architecture is designed to save hardware resources when realizing spec-zooming in a field programmable gate array (FPGA). An example design is deployed on a DBE with Xilinx Virtex-6 FPGA and an ARM processor. The performance is verified by X-band observations of Mars Express (MEX) and New Horizons (NH). Under an integration time of 1s, HIPE only takes 2.2ms to process single-channel baseband data and provides frequency accuracies of 7 mHz and 30 mHz for the tested MEX and NH data. HIPE is implemented inside DBE, so the extra computer is no longer required and the pressure of data transmission or storage is greatly relieved. It could easily be extended to parallel multi-channel, real-time processing and would be a powerful method for Doppler measurement in deep space exploration missions, such as the Chinese mission to Mars to be undertaken by 2020.
机译:实时,高精度频率相位估计是多普勒跟踪的关键任务,是深空航天器导航和行星无线电科学实验的主要技术。通常,模拟中频信号被数字化并通过称为数字后端(DBES)的信号处理硬件平台进行转换为基带,并且通过超高性能计算机执行参数估计。本文提出了一种新的实时,高精度参数估计器,称为硬件基础的集成参数估计器(HIPE)并在DBES内实现。建议自适应频率跟踪器进行初始信号检测,频率跟踪和数据。然后通过修改的DECHIRP技术顺序地获得参数估计,以及称为规范缩放的高分辨率频谱分析技术。此外,折叠架构被设计为在现场可编程门阵列(FPGA)中实现规格缩放时保存硬件资源。使用Xilinx Virtex-6 FPGA和ARM处理器在DBE上部署示例设计。 Mars Express(MEX)和新地平线(NH)的X波段观察验证了性能。在1S的集成时间下,HIPE仅需要2.2ms,以处理单通道基带数据,并为测试的MEX和NH数据提供7 MHz和30 MHz的频率精度。 Hipe在DBE内实现,因此不再需要额外的计算机,并且大大缓解了数据传输或存储的压力。它可以很容易地扩展到平行的多通道,实时处理,并且是深度空间勘探任务中的多普勒测量的强大方法,例如将在2020年到2020年进行的MARS的使命。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号