首页> 外文OA文献 >James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing
【2h】

James Webb Space Telescope Integrated Science Instrument Module Calibration and Verification of High-Accuracy Instrumentation to Measure Heat Flow in Cryogenic Testing

机译:James Webb太空望远镜集成科学仪器模块校准和验证,以测量低温测试中的热流

摘要

The James Webb Space Telescope (JWST) is an upcoming flagship observatory mission scheduled to be launched in 2018. Three of the four science instruments are passively cooled to their operational temperature range of 36K to 40K, and the fourth instrument is actively cooled to its operational temperature of approximately 6K. The requirement for multiple thermal zoned results in the instruments being thermally connected to five external radiators via individual high purity aluminum heat straps. Thermal-vacuum and thermal balance testing of the flight instruments at the Integrated Science Instrument Module (ISIM) element level will take place within a newly constructed shroud cooled by gaseous helium inside Goddard Space Flight Center's (GSFC) Space environment Simulator (SES). The flight external radiators are not available during ISIM-level thermal vacuum/thermal testing, so they will be replaced in test with stable and adjustable thermal boundaries with identical physical interfaces to the flight radiators. Those boundaries are provided by specially designed test hardware which also measures the heat flow within each of the five heat straps to an accuracy of less than 2 mW, which is less than 5% of the minimum predicted heat flow values. Measurement of the heat loads to this accuracy is essential to ISIM thermal model correlation, since thermal models are more accurately correlated when temperature data is supplemented by accurate knowledge of heat flows. It also provides direct verification by test of several high-level thermal requirements. Devices that measure heat flow in this manner have historically been referred to a "Q-meters". Perhaps the most important feature of the design of the JWST Q-meters is that it does not depend on the absolute accuracy of its temperature sensors, but rather on knowledge of precise heater power required to maintain a constant temperature difference between sensors on two stages, for which a table is empirically developed during a calibration campaign in a small chamber at GSFC. This paper provides a brief review of Q-meter design, and discusses the Q-meter calibration procedure including calibration chamber modifications and accommodations, handling of differing conditions between calibration and usage, the calibration process itself, and the results of the tests used to determine if the calibration is successful.
机译:詹姆斯·韦伯太空望远镜(JWST)是计划于2018年发射的即将到来的旗舰天文台任务。四种科学仪器中的三种被被动冷却到其36K至40K的工作温度范围,第四种仪器被主动冷却至其工作温度。温度约为6K。对多个热区的要求导致仪器通过单独的高纯度铝质散热带与五个外部散热器热连接。在综合科学仪器模块(ISIM)元件级别对飞行仪器进行热真空和热平衡测试将在Goddard太空飞行中心(GSFC)空间环境模拟器(SES)内由气态氦冷却的新建造的罩中进行。在ISIM级热真空/热测试期间,无法使用飞行外部散热器,因此在测试中将以稳定且可调节的热边界以及与飞行散热器相同的物理接口替换它们。这些边界是由专门设计的测试硬件提供的,该测试硬件还测量了五个加热带中每个加热带内的热流,其准确度小于2 mW,小于最小预测热流值的5%。达到此精度的热负荷测量对于ISIM热模型相关性至关重要,因为当通过准确了解热流来补充温度数据时,热模型之间的关系就更加精确。它还可以通过测试几个高级散热要求来提供直接验证。过去,以这种方式测量热流的设备被称为“ Q表”。 JWST Q表设计的最重要特征可能是它不依赖于其温度传感器的绝对精度,而是依赖于保持两级传感器之间的恒定温度差所需的精确加热器功率知识,为此,应在GSFC的小实验室中进行校准活动期间凭经验开发一张桌子。本文简要介绍了Q-meter的设计,并讨论了Q-meter的校准程序,包括校准室的修改和适应,校准和使用之间不同条件的处理,校准过程本身以及用于确定的测试结果如果校准成功。

著录项

  • 作者

    Glazer Stuart; Comber Brian;

  • 作者单位
  • 年度 2012
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号