首页> 外文期刊>Measurement Science & Technology >Adaptive incremental stippling for sample distribution in spatially adaptive PIV image analysis
【24h】

Adaptive incremental stippling for sample distribution in spatially adaptive PIV image analysis

机译:适应性增量计数在空间自适应PIV图像分析中的样本分布

获取原文
获取原文并翻译 | 示例

摘要

Adaptive sampling strategies in PIV have been shown to efficiently combine the need for limited user-dependence with increased performances in terms of spatial resolution and computational effort, thus rendering such approaches of great interest. The allocation of correlation windows across the spatial image domain is dependent on the interpretation of an underlying objective function, and the distribution of windows accordingly. It is important that such allocation is computationally efficient, robust to changing objective functions and conditions, and conducive to high quality sampling. In this paper, an alternative sample distribution method, based on adaptive incremental stippling, is presented and shown to combine the speed of PDF-based methods with the quality of 'ideal' spring-force methods. Case-dependent parameter tuning is no longer necessary, thus improving robustness. In addition, an algorithm to adaptively size initial correlation windows is proposed to further minimise user dependence.
机译:已经证明了PIV中的自适应采样策略,以有效地结合有限的用户依赖性,在空间分辨率和计算工作方面具有增加的性能,从而实现了极大兴趣的这种方法。跨空间图像域的相关窗口分配取决于潜在的目标函数的解释,并相应地分配Windows。重要的是,这种分配是计算上有效的,鲁棒到改变客观功能和条件,有利于高质量的采样。本文提出并示出了基于自适应增量计数的替代样品分布方法,以将基于PDF的方法的速度与“理想”弹簧力方法的质量相结合。不再需要依赖依赖的参数调谐,从而提高稳健性。另外,提出了一种算法,用于自适应大小的初始相关窗口以进一步最小化用户依赖性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号