...
首页> 外文期刊>ACS nano >Rational design of plasmonic nanostructures for biomolecular detection: Interplay between theory and experiments
【24h】

Rational design of plasmonic nanostructures for biomolecular detection: Interplay between theory and experiments

机译:用于生物分子检测的等离激元纳米结构的合理设计:理论与实验之间的相互作用

获取原文
获取原文并翻译 | 示例

摘要

In this work, we report a simple strategy to obtain ultrasensitive SERS nanostructures by self-assembly and bioconjugation of Au nanospheres (NSs). Homodimer aggregates with an interparticle gap of around 8 nm are generated in aqueous dispersions by the highly specific molecular recognition of biotinylated Au NSs to streptavidin (STV), while random Au NS aggregates with a gap of 5 nm are formed in the absence of STV due to hydrogen bonding among biotinylated NSs. Both types of aggregates depict SERS analytical enhancement factors (AEF) of around 10 ~7 and the capability to detect biotin concentrations lower than 1 × 10 ~(-12) M. Quite interesting, the AEF for an external analyte, Rhodamine 6G (RH6G), using the dimer aggregates is 1 order of magnitude greater (10 ~5) than using random aggregates (around 10 ~4). The dependence on the wavelength and the differences of the AEF for Au random aggregates and dimers are rationalized with rigorous electrodynamic simulations. The dimers obtained afford a new type of an in situ self-calibrated and reliable SERS substrate where biotinylated molecules can selectively be "trapped" by STV and located in the nanogap enhanced plasmonic field. Using this concept, powerful molecular-recognition-based SERS assays can be carried out. The capability of the dimeric structures for analytical applications is demonstrated using SPR spectroscopy to detect biotinylated immunoglobulin G at very low concentrations.
机译:在这项工作中,我们报告了一种通过自组装和金纳米球(NSs)的生物共轭获得超灵敏SERS纳米结构的简单策略。通过对生物素化的Au NSs到链霉亲和素(STV)的高度特异性分子识别,在水分散液中生成了具有约8 nm的粒子间间隙的Homodimer聚集体,而在没有STV的情况下,形成了5 nm间隙的无规Au NS聚集体在生物素化的NS之间的氢键。两种类型的聚集体均表现出约10〜7的SERS分析增强因子(AEF)和检测低于1×10〜(-12)M的生物素浓度的能力。非常有趣的是,外部分析物罗丹明6G(RH6G)的AEF ),使用二聚体聚合(10〜5)比使用随机聚合(约10〜4)大1个数量级。金的随机聚集体和二聚体对波长的依赖性和AEF的差异通过严格的电动力学模拟得以合理化。获得的二聚体提供了一种新型的原位自校准且可靠的SERS底物,其中生物素化的分子可以被STV选择性“捕获”并位于纳米间隙增强的等离激元场中。使用此概念,可以进行强大的基于分子识别的SERS分析。使用SPR光谱法证明了二聚体结构用于分析应用的能力,可检测极低浓度的生物素化免疫球蛋白G。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号