...
首页> 外文期刊>Marine Geology >Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): Hydrographic conditions, temporal succession, and Mn budget calculations
【24h】

Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): Hydrographic conditions, temporal succession, and Mn budget calculations

机译:Landsort Deep(波罗的海)中的大规模Mn碳酸盐形成:水文条件,时间顺序和MN预算计算

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

AbstractThe sediments of the Landsort Deep and Gotland Basin in the central Baltic Sea are strongly enriched in Mn carbonate. However, conceptual models attempting to explain the intense Mn carbonate precipitation in both basins are in part conflicting. In the Gotland Basin model, deposited Mn oxides are converted to Mn carbonate after the oxygenation of euxinic bottom waters enriched in dissolved Mn by major Baltic inflows (Huckriede and Meischner, 1996). By contrast, according to the Landsort Deep model, Mn carbonate precipitation occurs independent of oxygenation events below a euxinic water column (Lepland and Stevens, 1998; Lenz et al., 2015). In this study, we investigated Mn solid-phase signatures in recent/sub-recent well-dated sediments from the Landsort Deep and compared them to long-term observations to identify the hydrographic conditions favoring Mn carbonate formation. The comparisons of water column O2and sulfide time series with sedimentary Mn carbonate enrichments identified long-lasting bottom water oxygenation as an important environmental factor in the enhancement of Mn carbonate precipitation (up to 32wt% Mn) in the Landsort Deep. Thus, by preventing the escape of dissolved Mn from still reducing sediments into the open water column, these conditions allow the accumulation of large amounts of Mn-oxide particles at the sediment/water interface, with their subsequent conversion to Mn carbonate. The euxinic conditions that have prevailed almost continuously in the Landsort Deep since roughly AD 2000 do not favor Mn enrichment (maximum 0.9wt% Mn), highlighting the importance of the recurring oxygenation of bottom water, most likely via medium-intensity inflows. The Mn abundances in seven sediment cores from water depths of 190–437m together with Mn balance calculations indicated that the Mn inventory in the water column in response to porewater Mn reflux and detrital Mn input is sufficient for Mn carbonate enrichment only in the deepest part of the basin.Highlights?Exceptional Mn carbonate formation in sediments of the Landsort Deep?Comparison of dated Mn signatures and instrumental water-column time series?Mn carbonates form during long-term slightly oxygenated but non-euxinic periods?Medium-intensity inflows provide O2and favor Mn sequestration.?Sediment data and Mn balance imply that Mn carbonates occur in water depths >250m.]]>
机译:<![cdata [ 抽象 中央波罗的海的Landsort Deep和Gotland盆地的沉积物在Mn碳酸盐中强烈富集。然而,试图解释两个盆地中强烈的Mn碳酸盐沉淀的概念模型部分是矛盾的。在葛兰素盆地模型中,沉积的Mn氧化物在通过主要波罗的海流入(Huckriede和Meischner,1996)中富含溶解的MN溶解的MN氧化后转化为Mn碳酸盐。相比之下,根据Landsort深层模型,Mn碳酸盐沉淀出现在迅速水柱以下的氧合事件(Lepland和Stevens,1998; Lenz等人,2015)。在这项研究中,我们研究了近期/近期富日期沉积物中的MN固相签名,并将其与长期观测结果进行了比较,以确定有利于Mn碳酸盐形成的水文条件。水列O 2 和硫化物时间序列与沉积MN碳酸盐富集的硫化物时间序列鉴定了持久的底水氧合作为碳酸盐碳酸盐增强的重要环境因素Landsort深度(高达32wt%MN)深。因此,通过防止溶解的Mn脱落从沉积物中的沉积物中的沉积物中的脱落到开放水柱中,这些条件允许在沉积物/水界面处积聚大量的Mn-氧化物颗粒,随后转化为Mn碳酸盐。由于大致AD 2000,Landsort的营养状况几乎连续地在Landsort中持续,从2000年大致不满足Mn富集(最多0.9wt%MN),突出了底水的重复氧合的重要性,最有可能通过中强流入。来自190-437M水深的七个沉积物中的Mn丰度与Mn平衡计算一起表明,水柱中的Mn库存响应于孔水Mn回流和碎屑Mn输入足以仅在最深处的Mn碳酸盐富集盆地。 突出显示 < CE:列表ID =“l0005”> 异常MN Landsort Deep 日期MN签名和仪器水列时间Serie的比较s Mn碳酸盐在长期略微含氧但非exinic期间的形式 中强制流入提供O 2 并支持MN SeateStration。< / ce:para> 沉积物数据和Mn平衡意味着Mn碳酸盐发生在水深> 250m中。 ]]>

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号