...
首页> 外文期刊>ACS nano >Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques
【24h】

Nanoscale mapping of lithium-ion diffusion in a cathode within an all-solid-state lithium-ion battery by advanced scanning probe microscopy techniques

机译:先进扫描探针显微镜技术对全固态锂离子电池阴极中锂离子扩散的纳米级映射

获取原文
获取原文并翻译 | 示例

摘要

High-resolution real-space mapping of Li-ion diffusion in the LiNi _(1/3)Co_(1/3)Mn_(1/3)O_2 cathode within an all-solid-state thin film Li-ion battery has been conducted using advanced scanning probe microscopy techniques, namely, band excitation electrochemical strain microscopy (BE-ESM) and conductive atomic force microscopy. In addition, local variations of the electrochemical response in the LiNi _(1/3)Co_(1/3)Mn_(1/3)O_2 thin film cathode at different cycling stages have been investigated. This work demonstrates the unique feature and applications of the BE-ESM technique on battery research. The results allow us to establish a direct relationship of the changes in ionic mobility as well as the electrochemical activity at the nanoscale with the numbers of charge/discharge cycles. Furthermore, various factors influencing the BE-ESM measurements, including sample mechanical properties (e.g., elastic and dissipative properties) as well as surface electrical properties, have also been studied to investigate the coupling effects on the electrochemical strain. The study on the relationships between the Li-ion redistribution and microstructure of the electrode materials within thin film Li-ion battery will provide further understanding of the electrochemical degradation mechanisms of Li-ion rechargeable batteries at the nanoscale.
机译:在全固态薄膜锂离子电池的LiNi _(1/3)Co_(1/3)Mn_(1/3)O_2阴极中锂离子扩散的高分辨率实空间映射已得到使用先进的扫描探针显微镜技术(即带激发电化学应变显微镜(BE-ESM)和导电原子力显微镜)进行的操作。此外,还研究了LiNi _(1/3)Co_(1/3)Mn_(1/3)O_2薄膜阴极在不同循环阶段的电化学响应的局部变化。这项工作演示了BE-ESM技术在电池研究中的独特功能和应用。结果使我们能够建立离子迁移率的变化以及纳米级的电化学活性与充电/放电循环数的直接关系。此外,还研究了影响BE-ESM测量的各种因素,包括样品的机械性能(例如,弹性和耗散性能)以及表面电性能,以研究对电化学应变的耦合作用。对薄膜锂离子电池内电极材料的锂离子再分布与微观结构之间关系的研究,将为进一步了解锂离子充电电池在纳米尺度上的电化学降解机理提供进一步的了解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号