首页> 外文期刊>Faraday discussions >Crystal structure prediction of flexible pharmaceutical-like molecules: density functional tight-binding as an intermediate optimisation method and for free energy estimation
【24h】

Crystal structure prediction of flexible pharmaceutical-like molecules: density functional tight-binding as an intermediate optimisation method and for free energy estimation

机译:柔性药物状分子的晶体结构预测:密度官能团绑定作为中间优化方法和自由能估计

获取原文
获取原文并翻译 | 示例
           

摘要

Successful methodologies for theoretical crystal structure prediction (CSP) on flexible pharmaceutical-like organic molecules explore the lattice energy surface to find a set of plausible crystal structures. The initial search stages of CSP studies use relatively simple lattice energy approximations as hundreds of thousands of minima have to be considered. These generated crystal structures often have poor molecular geometries, as well as inaccurate lattice energy rankings, and performing reasonably accurate but computationally affordable optimisations of the crystal structures generated in a search would be highly desirable. Here, we seek to explore whether semi-empirical quantum-mechanical methods can perform this task. We employed the dispersion-corrected tight-binding Hamiltonian (DFTB3-D3) to relax all the inter- and intra-molecular degrees of freedom of several thousands of generated crystal structures of five pharmaceutical-like molecules, saving a large amount of computational effort compared to earlier studies. The computational cost scales better with molecular size and flexibility than other CSP methods, suggesting that it could be extended to even larger and more flexible molecules. On average, this optimisation improved the average reproduction of the eight experimental crystal structures (RMSD15) and experimental conformers (RMSD1) by 4% and 23%, respectively. The intermolecular interactions were then further optimised using distributed multipoles, derived from the molecular wave-functions, to accurately describe the electrostatic components of the intermolecular energies. In all cases, the experimental crystal structures are close to the top of the lattice energy ranking. Phonon calculations on some of the lowest energy structures were also performed with DFTB3-D3 methods to calculate the vibrational component of the Helmholtz free energy, providing further insights into the solid-state behaviour of the target molecules. We conclude that DFTB3-D3 is a cost-effective method for optimising flexible molecules, bridging the gap between the approximate methods used in CSP searches for generating crystal structures and more accurate methods required in the final energy ranking.
机译:柔性药物样有机分子上的理论晶体结构预测(CSP)的成功方法探讨了格子能量表面,以找到一组合理的晶体结构。 CSP研究的初始搜索阶段使用相对简单的晶格能量近似,因为必须考虑数十万个最小值。这些产生的晶体结构通常具有差的分子几何形状,以及不准确的格子能量排名,并且执行合理准确但是在搜索中产生的晶体结构的计算上的经济实惠的优化是非常理想的。在这里,我们寻求探索半经验量子 - 机械方法是否可以执行此任务。我们采用了分散纠正的紧密母亲(DFTB3-D3),以放宽五种药物样分子的数千个产生的晶体结构的所有分子间自由度,节省了大量的计算工作提前研究。计算成本比其他CSP方法的分子尺寸和灵活性更好,表明它可以扩展到甚至更大,更柔韧的分子。平均而言,这种优化将八个实验晶体结构(RMSD15)和实验晶体(RMSD1)的平均再现分别改善了4%和23%的实验晶体结构(RMSD15)。然后使用从分子波函数衍生的分布式多元化器进一步优化分子间相互作用,以精确描述分子间能量的静电分量。在所有情况下,实验晶体结构接近格子能量排名的顶部。对于一些最低能量结构的声子计算也用DFTB3-D3方法进行,以计算亥姆霍兹自由能的振动分量,从而进一步了解靶分子的固态行为。我们得出结论,DFFB3-D3是优化柔性分子的成本有效的方法,桥接CSP中使用的近似方法之间的间隙,用于产生晶体结构和更准确的方法在最终能量排名中所需的更准确的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号