...
首页> 外文期刊>Bioinspiration & biomimetics >Design of the musculoskeletal leg CARL based on the physiology of mono-articular and biarticular muscles in the human leg
【24h】

Design of the musculoskeletal leg CARL based on the physiology of mono-articular and biarticular muscles in the human leg

机译:基于单关节骨骼和人腿部骨质肌肉生理学的肌肉骨骼腿Carl设计

获取原文
获取原文并翻译 | 示例
           

摘要

In a lower extremity musculoskeletal leg, the actuation kinematics define the interaction of the actuators with each other and the environment. Design of such a kinematic chain is challenging due to the existence of the redundant biarticular actuators which simultaneously act on two joints, generating a parallel mechanism. Actuator kinematics is mainly dependent on the moment arm profile of the actuation system. It is a common practice to select a constant moment arm value for robotic actuation system; nevertheless, biological muscles feature a distinctive nonlinear moment arm profile that has been ignored in the design of the musculoskeletal robots. In this paper, we propose a design paradigm for compliant robotic leg CARL based on the direct replication of the human leg anatomy. The resulting mechanical system should (a) demonstrate a similar moment arm profile as in leg musculature, (b) exhibit expected physiological behavior of the muscles, (c) provide insight into the interaction of the actuators and possible improvement in the efficiency of the movements. We provide a comprehensive analysis of the moment arm profile of the leg musculature. The actuator kinematics of the designed leg is validated by comparing the contraction velocities of the muscles and actuators. The biological characteristics of the actuators are analyzed using the jump experiment data conducted on the previous version of the leg. The major physiological characteristics of the biarticular muscles, ligamentous action, and distal power transfer, is successfully demonstrated by the robotic leg. Our analysis demonstrates that the proposed structural design of the actuation system can improve the mechanical efficiency of this particular jump experiment up to 16% compared to the leg without actuator redundancy. Compared to the previous version of the leg, by only modifying the moment arm profiles, we can achieve an efficiency improvement of approximately 5%.
机译:在下肢肌肉骨骼腿中,致动运动学彼此互相定义了致动器的相互作用。这种运动链的设计是挑战的,由于冗余偏置致动器的存在,该致动器同时作用于两个接头,产生并联机构。执行器运动学主要取决于致动系统的时刻臂轮廓。为机器人致动系统选择一个恒时臂值是一种常见的做法;然而,生物肌肉具有独特的非线性时刻臂轮廓,在肌肉骨骼机器人的设计中被忽略。在本文中,我们提出了一种基于人腿解剖学直接复制的符合机器人腿Carl的设计范式。所得到的机械系统应该(a)表现出类似的力矩臂轮廓,如腿部肌肉组织,(b)表现出肌肉的预期生理行为,(c)提供对执行器的相互作用以及可能改善运动效率的洞察力。我们对腿部肌肉组织的时刻臂剖面提供了全面的分析。通过比较肌肉和执行器的收缩速度来验证设计腿的执行器运动学。使用在先前版本的腿上进行的跳转实验数据分析致动器的生物学特性。机器人腿成功地证明了偏头肌肉,韧带动作和远端动力转移的主要生理特性。我们的分析表明,与没有执行器冗余的腿相比,致动系统的建议结构设计可以提高该特定跳跃实验的机械效率高达16%。与以前版本的腿相比,仅通过修改时刻的手臂配置文件,我们可以达到约5%的效率提高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号