...
首页> 外文期刊>Geophysics: Journal of the Society of Exploration Geophysicists >A new high-order scheme based on numerical dispersion analysis of the wave phase velocity for semidiscrete wave equations
【24h】

A new high-order scheme based on numerical dispersion analysis of the wave phase velocity for semidiscrete wave equations

机译:一种新的高阶方案,基于模子波动波动方程波相速度的数值色散分析

获取原文
获取原文并翻译 | 示例

摘要

In the numerical computation of wave equations, numerical dispersion is a persistent problem arising from inadequate discretization of the continuous wave equation. To thoroughly understand the mechanism of numerical dispersion, we separately analyze the numerical dispersion relations of time-stepping and spatial discretization schemes by Fourier analysis. The relevant results show that the numerical dispersion errors of time-marching schemes depend on the time step length or the Courant number, whereas the numerical dispersion errors of spatial discretization schemes are determined by the error between the eigenvalues of the numerical spatial differential operator and the continuous spatial differential operator. We also find that the much better numerical dispersion accuracy of the stereo-modeling discrete (SMD)-type operator can be attributed to the inclusion of diversified basis functions for its eigenvalue. Based on these findings, we combine the optimal four-stage symplectic partitioned Runge-Kutta and eighth-order SMD as a new fully discrete scheme. The subsequent analysis of its normalized phase velocity is consistent with the numerical dispersion analysis in semidiscrete forms. This is followed by an acoustic wave simulation in a homogeneous model and corresponding computational efficiency comparison. The results show that the new scheme is much more accurate and antidispersive on a coarse grid. In the final two numerical experiments, we use the new scheme to model the acoustic wave propagation in a three-layer model and the Marmousi model. The convolutional perfectly matched layer is applied to eliminate artificial boundary reflections. Our semidiscrete numerical dispersion analysis provides an efficient tool to quantitatively evaluate the time-stepping and spatial discretization schemes. It can facilitate the development of more accurate fully discrete numerical schemes for solving seismic wave equations.
机译:在波动方程的数值计算中,数值分散是由连续波方程的离散化不足而产生的持续问题。为了彻底理解数值分散的机制,我们通过傅里叶分析分别分析时间阶梯和空间离散化方案的数值分散关系。相关结果表明,时间行进方案的数值色散误差取决于时间步长或龙头数,而空间离散化方案的数值分散误差由数值空间差分运算符的特征值之间的误差确定连续空间差分运算符。我们还发现立体式离散(SMD)型操作员的更好的数值分散精度可以归因于将多元化的基础函数列入其特征值。基于这些发现,我们将最佳的四级辛分区跑步-Kutta和第八阶SMD结合为新的完全离散方案。随后的其归一化阶段速度分析与半同晶体形式的数值分散分析一致。其次是在均匀模型中和相应的计算效率比较中的声波模拟。结果表明,新方案在粗网格上更加准确和防辐射。在最终的两个数值实验中,我们使用新方案来模拟三层模型和Marmousi模型中的声波传播。卷积完美匹配的层被应用于消除人造边界反射。我们的半同函数分散分析提供了一种有效的工具,可以定量评估时间级步进和空间离散化方案。它可以促进求解地震波方程的更准确的完全离散数值的开发。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号