...
首页> 外文期刊>Geomicrobiology journal >Interactions Between Fe(III)-oxides and Fe(III)-phyllosilicates During Microbial Reduction 2: Natural Subsurface Sediments
【24h】

Interactions Between Fe(III)-oxides and Fe(III)-phyllosilicates During Microbial Reduction 2: Natural Subsurface Sediments

机译:Fe(III) - 氧化物和Fe(III) - 微生物还原期间的Fe(III) - 蛋白的相互作用2:天然地下沉积物

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Dissimilatory microbial reduction of solid-phase Fe(III)-oxides and Fe(III)-bearing phyllosilicates (Fe(III)-phyllosilicates) is an important process in anoxic soils, sediments and subsurface materials. Although various studies have documented the relative extent of microbial reduction of single-phase Fe(III)-oxides and Fe(III)-phyllosilicates, detailed information is not available on interaction between these two processes in situations where both phases are available for microbial reduction. The goal of this research was to use the model dissimilatory iron-reducing bacterium (DIRB) Geobacter sulfurreducens to study Fe(III)-oxide vs. Fe(III)-phyllosilicate reduction in a range of subsurface materials and Fe(III)-oxide stripped versions of the materials. Low-temperature (12K) Mossbauer spectroscopy was used to infer changes in the relative abundances of Fe(III)-oxide, Fe(III)-phyllosilicate, and phyllosilicate-associated Fe(II) (Fe(II) phyllosilicate). A Fe partitioning model was employed to analyze the fate of Fe(II) and assess the potential for abiotic Fe(II)-catalyzed reduction of Fe(III)-phyllosilicates. The results showed that in most cases Fe(III)-oxide utilization dominated (70-100%) bulk Fe(III) reduction activity, and that electron transfer from oxide-derived Fe(II) played only a minor role (ca. 10-20%) in Fe partitioning. In addition, the extent of Fe(III)-oxide reduction was positively correlated to surface area-normalized cation exchange capacity and the Fe(III)-phyllosilicate/total Fe(III) ratio. This finding suggests that the phyllosilicates in the natural sediments promoted Fe(III)-oxide reduction by binding of oxide-derived Fe(II), thereby enhancing Fe(III)-oxide reduction by reducing or delaying the inhibitory effect that Fe(II) accumulation on oxide and DIRB cell surfaces has on Fe(III)-oxide reduction. In general our results suggest that although Fe(III)-oxide reduction is likely to dominate bulk Fe(III) reduction in most subsurface sediments, Fe(II) binding by phyllosilicates is likely to play a key role in controlling the long-term kinetics of Fe(III) oxide reduction
机译:固相Fe(III) - 氧化物和Fe(III) - Beachlisiilates(Fe(III) - 晶体)的异化微生物还原是缺氧土壤,沉积物和地下材料的重要过程。尽管各种研究记录了单相Fe(III) - 氧化物和Fe(III) - 晶体的微生物减少的相对程度,但是在这两种过程之间的相互作用中不可用的详细信息在两个相对于微生物减少的情况下。本研究的目标是使用模型含铁氧化铁(DirB)Geobacter Sulfurredence学习Fe(III) - 氧化物与Fe(III) - 晶硅酸盐降低的一系列地下材料和Fe(III) - 氧化物剥离了材料版本。使用低温(12K)莫斯贝尔光谱法推断出Fe(III) - 氧化物,Fe(III) - 晶硅酸盐和硅酸盐相关Fe(II)(Fe(II)字节硅酸盐)的相对丰度的变化。使用Fe分区模型来分析Fe(II)的命运,并评估非生物Fe(ii)的潜力 - 催化Fe(III) - 晶体。结果表明,在大多数情况下,在大多数情况下,二氧化碳利用统治(70-100%)批量Fe(III)还原活性,并且来自氧化物衍生的Fe(II)的电子转移仅发挥了次要作用(CA.10 -20%)在Fe分区中。此外,Fe(III) - 氧化物还原的程度与表面积归一化阳离子交换能力和Fe(III) - 晶硅酸盐/总Fe(III)的比例呈正相关。该发现表明,天然沉积物中的文化通过氧化物衍生的Fe(II)结合而促进Fe(III) - 氧化物,从而通过减少或延迟Fe(II)的抑制作用来增强Fe(III)氧化物。在氧化物和甲状腺细胞表面上积聚对Fe(III) - 氧化物还原。一般而言,我们的结果表明,尽管Fe(III) - 氧化物降低可能在大多数地下沉积物中占总Fe(III),但是通过Phyllosilicates的Fe(II)结合可能在控制长期动力学方面发挥关键作用Fe(III)氧化物还原

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号