首页> 外文期刊>Environmental Science: Nano >Surface structure controlling nanoparticle behavior: magnetism of ferrihydrite, magnetite, and maghemite
【24h】

Surface structure controlling nanoparticle behavior: magnetism of ferrihydrite, magnetite, and maghemite

机译:控制纳米粒子行为的表面结构:Ferrihydrite,磁铁矿和磁性磁铁的磁性

获取原文
获取原文并翻译 | 示例
           

摘要

Iron oxide nanoparticles are omnipresent in nature and of great importance for environmental sciences and technology. The size-dependent magnetic behavior of ferrihydrite (Fh), magnetite (Fe2O3 ), and maghemite (gamma-Fe2O3) has been studied in relation to the surface structure. The selected minerals have in common the presence of tetrahedral Fe. This Fe polyhedron is unstable at the surface when forming singly coordinated ligand(s). This leads to the size-dependency of the polyhedral composition, which is for Fh in excellent agreement with the relative contributions of edge and corner sharing measured with high-energy total X-ray scattering. For Fh, superparamagnetic behavior scales with particle volume in which magnetic coupling is proportional to a fraction of the Fe per particle. Magnetic saturation at low temperature scales with size and is predominantly due to polyhedral surface depletion. The mineral core of Fh may behave ferrimagnetically as well as antiferromagnetically. Both have opposite particle size dependency, for which a surface structural model has been developed. The relative stability of ferrimagnetic and antiferromagnetic Fh is related to a slight difference in the surface Gibbs free energy (similar to 0.03 J m(-2)). At the same surface structure, the predicted crossover point is at similar to 4 nm, above which the core of Fh shifts from antiferromagnetic to ferrimagnetic. For magnetite and maghemite, the size dependency of the ferrimagnetic behavior can be described with the same model as that developed for Fh by only adjusting the maximum magnetic saturation of the ideal bulk material to its theoretical value. As discussed and quantified, the structural defects of superparamagnetic Fe-oxide nanoparticles (SPION) will lower the magnetic saturation at a given size.
机译:氧化铁纳米粒子本质上是全部的,对环境科学和技术非常重要。已经研究了与表面结构的尺寸依赖性磁性,磁铁矿(FH),磁铁矿(Fe2O3)和磁性磁石(Gamma-Fe2O3)。所选择的矿物质有四面体Fe的存在。当形成单一协调配体时,该Fe PolyheDron在表面不稳定。这导致多面体组合物的尺寸依赖性,这对于与高能总X射线散射测量的边缘和角落共享的相对贡献非常符合FH。对于FH,具有颗粒体积的超顺磁性行为,其中磁耦合与每种粒子的Fe的一部分成比例。低温尺度下的磁饱和度,大小,主要是由于多面体表面耗尽。 FH的矿物核心可能表现为亚铁磁性以及反铁磁体。两者都具有相反的粒度依赖性,已经开发了表面结构模型。铁磁性和反铁磁FH的相对稳定性与表面GIBBS自由能的轻微差异有关(类似于0.03J m(-2))。在相同的表面结构处,预测的交叉点类似于4nm,上方FH的核心从反铁磁转移到铁磁性。对于磁铁矿和磁石,可以使用与FH开发的型号相同的模型来描述与FH开发的尺寸依赖性,仅通过将理想散装材料的最大磁饱和度调节到其理论值。如所讨论和量化的,超顺磁性Fe-氧化物纳米颗粒(SpiON)的结构缺陷将降低给定尺寸的磁饱和度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号