...
首页> 外文期刊>Advanced Science, Engineering and Medicine >Synthesis, Characterization of Nanoscale Lanthanum Aluminate and Simulation of Nanoscale Metal Oxide Semiconductor Devices
【24h】

Synthesis, Characterization of Nanoscale Lanthanum Aluminate and Simulation of Nanoscale Metal Oxide Semiconductor Devices

机译:纳米铝酸镧的合成,表征及纳米金属氧化物半导体器件的仿真

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The zeal to allow much higher density of logic gates/logic functions on extremely small chip, needed to scale down the Complementary Metal Oxide Semiconductor (CMOS) transistors to nano scale (1 nm to 100 nm). Thus the scaling of CMOS transistor requires replacement of the conventional silica gate oxide (SiO_2) or oxy nitride (SiON) with a higher dielectric constant (K) gate dielectric to minimize the leakage current and to maintain a large capacitance especially at nano level to escape Quantum Mechanical Tunneling. Among several contenders, lanthanum aluminium oxide/lanthanum aluminate (LaAIO_3) is the suitable successor of the conventional gate dielectric as it combines the advantages of high dielectric constant of lanthana (La_2O_3) and chemical, thermal stability of alumina (Al_2O_3). Hence synthesis of lanthanum aluminate nanoparticles was done by Gelation-Precipitation method and were characterized by X ray Diffractometer (XRD), Particle Size Analyzer (PSA), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). We also present a work on simulation of two Metal Oxide Semiconductor Field Effect Transistors (MOSFETs)-one with nano silica oxide layer and other with nano lanthanum aluminate oxide layer. We compare the I-V characteristics, Transmission spectra and conductance of both the MOSFETs to show that the output current of MOSFET using nano LaAIO_3 oxide layer is higher compared to that of the MOSFET using nano SiO_2 oxide layer.
机译:热衷于在极小的芯片上实现更高密度的逻辑门/逻辑功能的方法,需要将互补金属氧化物半导体(CMOS)晶体管缩小至纳米级(1 nm至100 nm)。因此,CMOS晶体管的缩小要求用较高的介电常数(K)栅极电介质代替常规的二氧化硅栅极氧化物(SiO_2)或氮化氧(SiON),以最小化泄漏电流并保持大电容,尤其是在纳米级以逃逸量子机械隧穿。在几种竞争者中,镧铝氧化物/铝酸镧(LaAIO_3)是常规栅极电介质的合适后继产品,因为它结合了镧系元素(La_2O_3)的高介电常数和氧化铝的化学,热稳定性(Al_2O_3)的优点。因此,铝酸镧纳米粒子的合成是通过凝胶沉淀法完成的,并通过X射线衍射仪(XRD),粒度分析仪(PSA),热重分析/差热分析(​​TG / DTA),扫描电子显微镜(SEM)和透射电子显微镜(TEM)。我们还介绍了两个金属氧化物半导体场效应晶体管(MOSFET)的仿真工作-一个带有纳米氧化硅层,另一个带有纳米铝酸镧层。我们比较了这两个MOSFET的I-V特性,透射光谱和电导,以表明使用纳米LaAIO_3氧化物层的MOSFET的输出电流比使用纳米SiO_2氧化物层的MOSFET的输出电流高。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号