...
首页> 外文期刊>International Journal of Robotics & Automation >SPACE CLIMBING ROBOT FEET WITH MICROARRAY STRUCTURE BASED ON DISCRETE ELEMENT METHOD
【24h】

SPACE CLIMBING ROBOT FEET WITH MICROARRAY STRUCTURE BASED ON DISCRETE ELEMENT METHOD

机译:基于离散元素法的微阵列结构空间攀爬机器人脚

获取原文
获取原文并翻译 | 示例

摘要

Aiming at the on-orbit maintenance requirements of spacecraft, this paper proposed an updated type of space climbing robot that can climb onto the target spacecraft in space environment for repairing and rescuing. The robot's movement system consists of piezoelectric driving legs and micro-adhesive feet. The robot leg and body connection have two degrees of freedom, the knee joint has one degree of freedom, and the ankle joint has two degrees of freedom. In space environment with no gravity, the climbing robot can over obstacles by crawling movement and flipping movement. The clamping force of the robot is provided by the adhesion of the robot feet with microarray structure. The robot foot-end microarray adhesion structure was designed based on the multi-scale microstructure of the gecko's sole. The effects of the structural parameters, such as the contact area, length-diameter ratio, length, diameter, and density, on the adhesion characteristics of the microarrays in zero-gravity space environment were analysed. The simulation model was established using the discrete element software EDEM. The normal and tangential adhesion of the microarray in different motion modes is obtained by simulation. The simulation results demonstrate that using different ways of movement can achieve different adhesive abilities. The above conclusion supports the theory of the later achievement regarding robot feet's strong attaching and rapid detaching ability.
机译:针对航天器的轨道维护要求,本文提出了一种更新类型的空间攀爬机器人,可以在空间环境中爬上目标航天器进行修复和救援。机器人的运动系统由压电驱动腿和微粘性脚组成。机器人腿和车身连接具有两度自由度,膝关节具有一定程度的自由度,踝关节具有两度自由度。在没有重力的太空环境中,攀爬机器人通过爬行运动和翻转运动可以过度障碍物。机器人的夹紧力由机器人脚与微阵列结构的粘附来提供。基于壁虎鞋底的多尺度微结构设计了机器人脚末微阵列粘附结构。分析了结构参数,例如接触面积,长度直径比,长度和密度,对零重力空间环境中微阵列的粘附特性的影响。使用离散元件软件EDEM建立了模拟模型。通过模拟获得微阵列在不同运动模式中的正常和切向粘附。仿真结果表明,使用不同的运动方式可以实现不同的粘合剂能力。上述结论支持后期成就的理论,了解机器人脚的强大附着力和快速分离能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号