...
首页> 外文期刊>International Journal of Refractory Metals & Hard Materials >Stress relaxation through thermal crack formation in CVD TiCN coatings grown on WC-Co with different Co contents
【24h】

Stress relaxation through thermal crack formation in CVD TiCN coatings grown on WC-Co with different Co contents

机译:通过不同的CO含量在WC-CO上生长的CVD TICN涂层热裂纹形成应力松弛

获取原文
获取原文并翻译 | 示例

摘要

TiCN coatings were grown by chemical vapor deposition (CVD) on WC-Co substrates with different Co contents, in order to control thermal stress. The driving force for the development of thermal stress is attributed to the difference between room and deposition temperature (Delta T approximate to -780 degrees C), and the mismatch of the coefficient of thermal expansion (CTE) between substrate and coating. Co contents of 6, 7.5, 10, 12.5, and 15 wt% were utilized to adjust the CTE of the substrate, and therefore tune the stress in TiCN coatings. Dilatometry of the substrates and high temperature X-ray diffraction of a powdered TiCN coating indicate a decreasing CTE-mismatch for increasing substrate Co contents. In consequence, residual stress in TiCN determined by X-ray diffraction increases up to 662 +/- 8 MPa with decreasing Co contents down to 10 wt%. For Co contents below 10 wt %, the residual stress decreases. The formation of thermal crack networks in TiCN, analyzed by scanning electron microscopy, coincides with 10 wt% Co. Stress relaxation in TiCN coatings through the formation of thermal cracks becomes evident. A finite element simulation utilized for the calculation of residual stress distributions reveals shielding effects, which occur with the introduction of thermal cracks. Discrepancies between experimental and simulated thermo-elastic stresses imply the presence of secondary relaxation sources. High temperature residual stresses in TiCN, determined up to 1000 degrees C (i.e. above deposition temperature), suggest additional thermal crack formation for substrate Co contents of 6 wt%.
机译:通过具有不同CO含量的WC-Co底物上的化学气相沉积(CVD)生长TiCN涂层,以控制热应力。热应力发展的驱动力归因于房间和沉积温度(ΔT近似为-780℃)之间的差异,以及基板和涂层之间的热膨胀系数(CTE)的不匹配。使用6,7.5,10,12.5和15wt%的CO含量调节基材的CTE,因此调节TICN涂层中的应力。粉末状的TiCN涂层的底物和高温X射线衍射的膨胀测定表明用于增加基材CO含量的降低的CTE - 失配。结果,由X射线衍射确定的TICN中的残余应力增加到662 +/- 8MPa,其CO含量降低至10wt%。对于低于10wt%的CO含量,残余应力降低。通过扫描电子显微镜分析的TiCN中的热裂纹网络形成,通过形成热裂纹的TiCN涂层中的10wt%Co.应力松弛恰到好异。用于计算残余应力分布的有限元模拟显示出在引入热裂纹时发生的屏蔽效果。实验和模拟热弹性应力之间的差异意味着存在二次松弛来源。在TiCN中高温残余应力,确定高达1000℃(即,上述沉积温度),表明底物Co含量为6wt%的额外热裂纹形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号