首页> 外文期刊>International Journal of Fracture >Analysis and design of a three-phase TRIP steel microstructure for enhanced fracture resistance
【24h】

Analysis and design of a three-phase TRIP steel microstructure for enhanced fracture resistance

机译:三相跳闸微观结构的分析与设计,提高裂缝抗性

获取原文
获取原文并翻译 | 示例
       

摘要

The goal of this paper is to predict how the properties of the constituent phases and microstructure of a transformation induced plasticity steel influence its fracture resistance. The steel selected for study was a three-phase quenched and partitioned (QP) sheet steel comprised of 50% ferrite, 42% martensite and 8% retained austenite (RA) with ~980 MPa tensile strength. Experiments show that ductile fracture in the steel involves nucleation, growth, and coalescence of micron-scale voids. Accordingly, the failure process is modeled at the microstructure scale by idealizing the individual phases of the steel using elastic-viscoplastic constitutive relations that account for the loss of strength resulting from cavitation, as well as the effects of transformation of metastable RA to marten-site. The flow behavior of the phases and the transfor-mation kinetics of RA are calculated by homogenizing the microscale calibrated crystal plasticity constitutive relations from a previous study (Srivastava in J Mech Phys Solids 78:46-69,2015) while the damage parameters are determined by void cell model calculations. The microstructure-scale simulations are used to compute the fracture and instability loci for the steel, which are used to calibrate the GISSMO (Generalized Incremental Stress State Dependent Damage Model) (Andrade in Int J Fract 200:127-150,2016). The microstructure-informed GISSMO model for QP980 is found to predict fracture strains within 18% of experimental measurements of ligament-type test specimens. Finally, a series of virtual steel microstructures are analyzed to determine the influence of the phase volume fractions on the fracture resistance of the steel. Two candidate microstructures are identified that exhibit increased engineering fracture strains (> 57%) without significantly compromising (within 6%) the tensile strength when compared to the baseline QP980.
机译:本文的目的是预测转化诱导的塑性钢的组成阶段和微观结构的性质如何影响其骨折性抗性。选择用于研究的钢是一种三相淬火和分配的(QP)钢,其包含50%铁氧体,42%马氏体和8%保留的奥氏体(Ra),具有〜980MPa拉伸强度。实验表明,钢中的韧性骨折涉及微米级空隙的成核,生长和聚结。因此,通过使用弹性粘塑组成型关系理想钢的个体阶段,通过考虑空化的强度丧失的钢的单个相,以及将亚稳拉到Marten - 现场的影响的影响。通过将来自先前研究的微观校准的晶体塑性构成型关系均匀化(J Mech Phy Solid 78:46-69,2015)的微观校准的晶体塑性构成关系来计算RA的流动性能和RA的转型动力学。确定损伤参数通过空隙单元模型计算。微结构级模拟用于计算钢的断裂和不稳定性基因座,其用于校准GISSMO(广义增量应力状态依赖性损伤模型)(INTRADE在int J FRANT 200:127-150,2016)。发现QP980的微观结构通知的GISSMO模型预测韧带型试样的实验测量的18%以内的骨折菌株。最后,分析了一系列虚拟钢微结构,以确定相体积分数对钢的裂缝电阻的影响。鉴定出两种候选微观结构,其表现出增加的工程骨折菌株(> 57%),而与基线QP980相比,在抗拉强度下的拉伸强度显着损害(在6%以内。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号