首页> 外文学位 >The Optimization and Design of a Fully Austenitic, Gamma-Prime Strengthened TRIP Steel for Blast and Fragment Resistance.
【24h】

The Optimization and Design of a Fully Austenitic, Gamma-Prime Strengthened TRIP Steel for Blast and Fragment Resistance.

机译:耐冲击和抗碎裂的全奥氏体,γ-总理增强的TRIP钢的优化设计。

获取原文
获取原文并翻译 | 示例

摘要

Current analysis into the property requirements of materials designed for blast and fragment protection has led to the need for high tensile uniform ductility to withstand the pressure wave and high shear localization resistance to withstand fragment penetration. Additionally, it has been shown that steels with retained austenite are able to outperform standard martensitic steels when subjected to fragment simulating projectiles (FSP) in ballistic experiments. Using a systems based, computational materials design approach, a series of prototype precipitation strengthened, fully austenitic steels have been designed to obtain superior performance in blast and fragment protection. The most recent design, TRIP-180, explores optimized transformation induced plasticity (TRIP) to counteract strain softening and thus significantly increase uniform plastic deformation in both tension and shear at high strength (1241 MPa / 180 ksi). The transformation hardening delays the onset of localization, which in tension delays necking, and in shear delays plugging. Through precipitation heat treatment, the matrix composition can be varied to optimize the austenite stability, quantified by the Ms sigma temperature.;Baseline data quantifying the martensitic transformation in shear was obtained through a series of quasi-static torsion experiments performed on TRIP-180. Analysis of the postmortem microstructures allowed for calibration of M_s.;sigma(sh) temperatures with the transformation product morphologiesin the stress-assisted regime, where the plate martensite forms at the same locations as when quenching, and strain-induced regime, where the finely dispersed martensite forms at the intersections of shear bands. Dynamic testing (E = 104/s) identified the optimal austenite stability ( T -- Ms sigma(sh) = 60°C ) required to delay the shear localization instability at higher ultimate shear stress levels (1420 MPa) and larger plastic strains (0.103) than an existing Navy standard, HSLA-100 (970 MPa and 0.090). Even with adiabatic heating reducing the martensitic transformation under adiabatic conditions, the performance indicates that there is sufficient transformation plasticity to alter and delay shear localization. Under ballistic conditions (E = 105/s) TRIP-180's performance shows that optimized austenite stability provides for greater relative FSP V50 performance. In addition, postmortem analysis on the impact craters reveals multiple arrested adiabatic shear bands with evidence of a martensite transformation zone around each band's termination. Several parametric models were updated and calibrated with three-dimensional atom probe data to more precisely predict the evolution of the gamma-prime precipitates and matrix composition. Knowledge of the required optimum Ms sigma(sh) temperature, the optimum yield strength for FSP ballistic performance, and the requirement to thermodynamically suppress a grain boundary cellular precipitation of the eta phase quantitatively defined the design parameters of the current prototype alloy, Blastalloy TRIP 130. Designed with a yield strength of 896 MPa (130 ksi) and a M ssigma(sh) temperature of -40C, the alloy exhibited a yield strength of 852 MPa (123.5 ksi) with superior transformation plasticity and a Ms sigma(sh) temperature of -42°C without grain boundary eta formation given an aging of 20 hrs at 700°C.
机译:当前对用于爆炸和碎片保护的材料的性能要求的分析导致需要高拉伸均匀延展性以承受压力波,并需要高剪切局部抗力以抵抗碎片穿透。另外,已经表明,在弹道实验中,当采用碎片模拟弹丸(FSP)时,具有残留奥氏体的钢能够胜过标准马氏体钢。使用基于系统的计算材料设计方法,已设计了一系列原型沉淀强化的全奥氏体钢,以在爆炸和碎片防护方面获得出色的性能。最新的设计TRIP-180探索了优化的相变诱发塑性(TRIP),以抵消应变软化,从而显着提高高强度(1241 MPa / 180 ksi)的拉伸和剪切力下的均匀塑性变形。相变硬化延迟了局部化的开始,这在张力方面延迟了缩颈,而在剪切方面则延迟了堵塞。通过沉淀热处理,可以改变基质成分以优化奥氏体稳定性(通过Ms sigma温度进行定量)。通过在TRIP-180上进行的一系列准静态扭转实验,获得了量化剪切中马氏体相变的基线数据。通过对事后微观结构的分析,可以在应力辅助状态下以转变产物形态对M_s.sigma(sh)温度进行校准,在该状态下,板状马氏体的形成位置与淬火时相同,而应变诱导状态下的马氏体形成位置也很精细。剪切带相交处形成分散的马氏体。动态测试(E = 104 / s)确定了最佳奥氏体稳定性(T-Ms sigma(sh)= 60°C),可以延迟较高的极限剪切应力水平(1420 MPa)和较大的塑性应变(比现有的海军标准HSLA-100(970 MPa和0.090)高0.103)。即使采用绝热加热降低了绝热条件下的马氏体相变,性能也表明存在足够的相变可塑性来改变和延迟剪切局部化。在弹道条件下(E = 105 / s),TRIP-180的性能表明,优化的奥氏体稳定性可提供更高的FSP V50相对性能。此外,对撞击坑的事后分析显示,多个绝热的剪切带被阻滞,并在每个带的末端周围有马氏体转变区。更新了几个参数模型,并使用三维原子探针数据进行了校准,以更精确地预测γ-底质沉淀物和基质组成的演变。了解所需的最佳Ms sigma(sh)温度,用于FSP弹道性能的最佳屈服强度以及热力学抑制eta相的晶界细胞沉淀的要求定量地定义了当前原型合金Blastalloy TRIP 130的设计参数。设计的屈服强度为896 MPa(130 ksi),M ssigma(sh)温度为-40C,该合金的屈服强度为852 MPa(123.5 ksi),具有出色的相变塑性和Ms sigma(sh)温度。如果在700°C时效20小时,则不会产生-42°C的晶界η形成。

著录项

  • 作者

    Wengrenovich, Nicholas J.;

  • 作者单位

    Northwestern University.;

  • 授予单位 Northwestern University.;
  • 学科 Materials science.
  • 学位 Ph.D.
  • 年度 2016
  • 页码 201 p.
  • 总页数 201
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号