首页> 外文期刊>International Journal of Fluid Power >Neural network based power management of hydraulic hybrid vehicles
【24h】

Neural network based power management of hydraulic hybrid vehicles

机译:基于神经网络的液压混合动力车辆电力管理

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Effective power management is key to maximizing the performance and efficiency of hydraulic hybrid powertrains. However, the strong influence of future driving events on the optimal control policy limits the effectiveness of many approaches investigated to date. To address this issue the authors have proposed and investigated a novel power management controller that aims to predict online the accumulator's near optimal state trajectory. It is demonstrated in this paper that if the optimal accumulator state trajectory is known, then an implementable control scheme can achieve near globally optimal fuel efficiency. Controller development began by optimally controlling a series hybrid over a representative drive cycle using Dynamic Programming (DP). A Neural Network (NN) was then trained to reproduce the DP optimal accumulator pressure trajectory based on the vehicle's velocity over the previous thirty seconds. In this way the NN generalized the relationship between vehicle velocity and accumulator pressure. The NN power management controller's performance was then evaluated on a hardware-in-the-loop transmission dynamometer using untrained drive cycles to demonstrate the generality of the proposed approach. During these untrained evaluation cycles the NN controller was able to decrease average fuel consumption by 25.8% when compared to a baseline constant pressure control strategy.
机译:有效的电源管理是最大限度地提高液压混合动力动力动力动力动力动力动力动力的关键。然而,未来的驾驶事件对最佳控制政策的强烈影响限制了许多迄今为止调查的方法的有效性。为了解决这一问题,提议提出并调查了一个新的电源管理控制器,该控制器旨在预测在线累加器的近最佳状态轨迹。本文证明了,如果已知最佳蓄能器状态轨迹,则可实现的控制方案可以实现近全局最佳燃料效率。控制器开发通过使用动态编程(DP)在代表驱动周期上最佳地控制串联混合动力。然后训练神经网络(NN)以基于前三十秒的车辆的速度来再现DP最佳蓄能器压力轨迹。以这种方式,NN通过了车辆速度和蓄能器压力之间的关系。然后,使用未训练的驱动循环在硬件输送循环上对NN电源管理控制器的性能进行评估,以展示所提出的方法的一般性。在这些未经训练的评估周期期间,与基线恒压控制策略相比,NN控制器能够将平均燃料消耗降低25.8%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号