...
首页> 外文期刊>Intensive care medicine >Mask mechanics and leak dynamics during noninvasive pressure support ventilation: a bench study.
【24h】

Mask mechanics and leak dynamics during noninvasive pressure support ventilation: a bench study.

机译:非侵入压力支持通风过程中的面具力学和泄漏动力学:平坦研究。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

OBJECTIVE: To study the mask mechanics and air leak dynamics during noninvasive pressure support ventilation. SETTING: Laboratory of a university hospital. DESIGN: A facial mask was connected to a mannequin head that was part of a mechanical respiratory system model. The mask fit pressure (P(mask-fit)) measured inside the mask's pneumatic cushion was adjusted to 25 cmH(2)O using elastic straps. Pressure support (PS) was set to ensure a maximal tidal volume distal to the mask (VT(distal)) but avoiding failure to cycle to exhalation. MEASUREMENTS: Airway pressure (P(aw)), P(mask-fit), mask occlusion pressure (P(mask-occl)=P(mask-fit)-P(aw)), VT proximal (VT(prox)), distal to the mask (VT(distal)), air leak volume ( Leak=VT(prox)-VT(distal)), and inspiratory air leak flow rate (difference between inspiratory flow proximal and distal to the mask) were recorded. RESULTS: PS 15 cmH(2)O was the highest level that could be used without failure to cycle to exhalation (VT(distal) of 585+/-4 ml, leak of 32+/-1 ml or 5.2+/-0.2% of VT(prox), and a minimum P(mask-occl) of 1.7+/-0.1 cmH(2)O). During PS 16 cmH(2)O the P(mask-occl) dropped to 1.1+/-0.1 cmH(2)O, and at this point all flow delivered by the ventilator leaked around the mask, preventing the inspiratory flow delivered by the ventilator from reaching the expiratory trigger threshold. CONCLUSION: P(mask-fit) and P(mask-occl) can be easily measured in pneumatic cushioned masks and the data obtained may be useful to guide mask fit and inspiratory pressure set during noninvasive positive pressure ventilation.
机译:目的:在非侵入式压力支撑通风中研究面罩力学和空气泄漏动力学。环境:大学医院实验室。设计:面膜连接到时装模特,是机械呼吸系统模型的一部分。使用弹性带调节到掩模的气垫内部测量的面罩配合压力(P(掩模配合))调节至25cmH(2)o。设定压力支撑(PS)以确保到掩模的最大潮气体积(VT(远端)),但避免失败以循环到呼气。测量:气道压力(P(aw)),p(掩模配合),掩模闭塞压力(p(掩模-occl)= p(掩模配合)-p(aw)),vt近端(vt(prox)) ,对掩模的远端(VT(远端)),空气泄漏体积(泄漏= VT(PROX)-VT(远端)),并记录了吸气的空气泄漏流量(吸气流动近端和远端之间的差异)。结果:PS 15 CMH(2)o是可以使用的最高水平,无需循环到呼气(VT(远端)为585 +/- 4毫升,泄漏32 +/- 1 ml或5.2 +/- 0.2 vt(prox)的百分比,以及1.7 +/- 0.1 cmh(2)o)的最小p(掩模-occl))。在PS 16 CMH(2)o期间,P(掩模-OCCL)下降至1.1 +/- 0.1 CMH(2)O,此时通过呼吸机绕过掩模泄漏的所有流动,防止了所提供的吸气流动呼吸机达到呼气触发阈值。结论:P(掩模配合)和P(掩模-OCCL)可以在充气缓冲的掩模中易于测量,所获得的数据可用于引导在非侵入性正压通气期间的掩模配合和吸气压力设定。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号