首页> 外文期刊>Intelligence: A Multidisciplinary Journal >A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data
【24h】

A framework for extracting urban functional regions based on multiprototype word embeddings using points-of-interest data

机译:基于Multiprotype Word Embeddings利用兴趣点数据提取城市功能区域的框架

获取原文
获取原文并翻译 | 示例

摘要

Many studies are in an effort to explore urban spatial structure, and urban functional regions have become the subject of increasing attention among planners, engineers and public officials. Attempts have been made to identify urban functional regions using high spatial resolution (HSR) remote sensing images and extensive geo-data. However, the research scale and throughput have also been limited by the accessibility of HSR remote sensing data. Recently, big geo-data are becoming increasingly popular for urban studies since research is still accessible and objective with regard to the use of these data. This study aims to build a novel framework to provide an alternative solution for sensing urban spatial structure and discovering urban functional regions based on emerging geo-data - points of interest (POIs) data and an embedding learning method in the natural language processing (NLP) field. We started by constructing the intraurban functional corpus using a center-context pairs-based approach. A word embeddings representation model for training that corpus was used to extract multiprototype vectors in the second step, and the last step aggregated the functional parcels based on an introduced spatial clustering method, hierarchical density-based spatial clustering of applications with noise (HDBSCAN). The clustering results suggested that our proposed framework used in this study is capable of discovering the utilization of urban space with a reasonable level of accuracy. The limitation and potential improvement of the proposed framework arc also discussed.
机译:许多研究旨在探索城市空间结构,城市功能区已成为规划人员,工程师和公职人员之间越来越多的主题。已经尝试使用高空间分辨率(HSR)遥感图像和广泛的地理数据来识别城市功能区域。但是,研究规模和吞吐量也受到HSR遥感数据的可访问性的限制。最近,由于研究仍然可以访问和使用这些数据,大地理数据正变得越来越受到城市研究的流行。本研究旨在建立一个新颖的框架,以提供一种替代解决城市空间结构的替代解决方案,并基于新兴地质数据 - 兴趣点(POI)数据和自然语言处理中的嵌入学习方法(NLP)来发现城市功能区场地。我们开始使用基于中心上下文对的方法构建内管功能语料库。用于训练的单词嵌入式表示模型用于在第二步中提取多字型向量,并且最后一步基于引入的空间聚类方法,基于分层密度的空间聚类,具有噪声(HDBSCAN)的应用程序的分层密度的空间聚类聚合。聚类结果表明,我们在本研究中使用的拟议框架能够发现城市空间的利用,具有合理的准确性。讨论了所提出的框架ARC的限制和潜在改进。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号