...
首页> 外文期刊>Advances in Chemical Physics >THE PHYSICS OF ULTRATHIN SOLID-FLUID-SOLID FILMS: FROM SURFACE INSTABILITIES TO ISOLATED POCKETS OF FLUID
【24h】

THE PHYSICS OF ULTRATHIN SOLID-FLUID-SOLID FILMS: FROM SURFACE INSTABILITIES TO ISOLATED POCKETS OF FLUID

机译:超薄固体-液体-固体薄膜的物理:从表面不稳定性到液体的独立囊

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

This chapter describes the physical processes that occur in free-standing ultrathin trilayer films consisting of a fluid layer sandwiched in between two solid layers,. We have recently referred to these films as "Dutcher films"; these are namedafter the group of John Dutcher, whose experiments motivated these computational studies [1-3], An interesting instability arises in these films if the total film thickness is thin enough that van der Waals forces acting across it are sufficiently strong to deform the solid layers. In other words, the van der Waals forces can favor the formation and growth of instabilities (resulting in the dewetting of fluid films on substrates or film breakup in free-standing fluid films). In contrast, the elasticity of the solid capping layers resist the bending deformations required for instability growth. However, for very thin films the van der Waals forces are sufficiently strong that the solid layer begins to deform. The surface instabilities grow with time because of the van der Waals forces, but are restricted by both the deformation energy of the solid layer and the transport kinetics of the fluid layer. In particular, small-wavelength deformations in the solid layer are more energetically unfavorable, while large-wavelength deformations would require the transport of fluid material over kinetically-prohibitive distances. Hence, the competition between energetics and kinetics selects a characteristic wavelength for undulation growth.
机译:本章介绍了在由两层固体层之间夹有一层流体层的超薄三层独立膜中发生的物理过程。我们最近将这些电影称为“荷兰电影”;这些以约翰·荷兰人(John Dutcher)的小组命名,他们的实验激发了这些计算研究的发展[1-3],如果这些膜的总厚度足够薄,以至于作用在其上的范德华力足以使其变形,这些膜就会产生有趣的不稳定性。固体层。换句话说,范德华力会促进不稳定性的形成和增长(导致基材上的流体膜反润湿或自立式流体膜中的膜破裂)。相反,固体覆盖层的弹性抵抗了不稳定性增长所需的弯曲变形。但是,对于非常薄的薄膜,范德华力足够强,以至于固体层开始变形。由于范德华力,表面不稳定性随时间增长,但受固体层的变形能和流体层的传输动力学的限制。特别地,固体层中的小波长变形在能量上更不利,而大波长变形将需要在动力学上禁止的距离上输送流体材料。因此,高能与动力学之间的竞争为波动增长选择了特征波长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号