...
首页> 外文期刊>Inorganic Chemistry Frontiers >Thin-walled hollow Au-Cu nanostructures with high efficiency in electrochemical reduction of CO2 to CO
【24h】

Thin-walled hollow Au-Cu nanostructures with high efficiency in electrochemical reduction of CO2 to CO

机译:薄壁空心Au-Cu纳米结构,具有高效率的电化学减少CO2与CO

获取原文
获取原文并翻译 | 示例
           

摘要

Bimetallic hollow structures can be efficiently used to improve the utilization of noble metals in electrocatalysts, but few studies have reported the application of bimetallic hollow nanocomposites for the electrochemical reduction of CO2. Herein, we demonstrated the synthesis of hollow Au-Cu nanoparticles of size ranging from 50 nm to 100 nm with a wall thickness of 4.95 +/- 0.81 nm for efficient CO2 reduction reaction (CO2RR) via galvanic replacement and the Kirkendall effect between copper and gold. In the fabrication procedure, a gold precursor was pre-dissolved in TOP to lower the reduction potential of Au3+, which could then be reduced by Cu0. The obtained hollow Au-Cu NPs were then supported on carbon black for CO2RR measurement, and it exhibited a maximum CO FE of 53.3% at -0.7 V (vs. RHE), which was very close to that of Au NP/C, but the gold mass current density of hollow Au-Cu NP/C was much higher. The hollow Au-Cu NP/C also showed good stability in long-time measurements for CO2RR. To find out how the superior catalytic performance was achieved, hollow Au-Cu NP/C was then annealed in O-2 and N-2. It was found that after being annealed, the catalysts almost totally lost the activity towards CO2RR, which may be due to the partial segregation of Cu species on the nanoparticle surface as well as a decrease in the surface defect density with the improvement in crystallinity. Thus, it was concluded that high dispersion of more Au atoms on the nanoparticle surface together with the presence of more surface defect sites could account for the superior CO2RR performance of the as-synthesized hollow Au-Cu NP/C.
机译:双金属中空结构可以有效地用于改善电催化剂中贵金属的利用,但是少数研究报道了双金属中空纳米复合材料在CO 2的电化学还原中的应用。在此,我们证明了宽度为50nm至100nm的中空Au-Cu纳米颗粒的合成,壁厚为4.95 +/- 0.81nm,用于通过电催化替换和铜之间的KIRKENDALL效应有效的CO 2还原反应(CO2RR)。金子。在制造过程中,将金前体预溶于顶部,以降低Au3 +的降低电位,然后通过Cu0降低。然后将所得的中空Au-Cu NPS负载在炭黑上以进行CO 2RR测量,并且在-0.7V(rhe)下显示出53.3%的最大CO Fe,其非常接近Au NP / C,但是空心Au-Cu np / c的金质量电流密度要高得多。中空AU-Cu NP / C也表现出CO 2R的长时间测量稳定性。为了了解如何实现优异的催化性能,然后在O-2和N-2中退火空心Au-Cu NP / C.结果发现,在退火后,催化剂几乎完全丧失了CO2RR的活性,这可能是由于Cu物种在纳米颗粒表面上的部分偏析以及表面缺陷密度随着结晶度的改善而降低。因此,得出结论,在纳米颗粒表面上的更多Au原子与更多表面缺陷位点的存在一起的高分散可以考虑AS合成的中空Au-Cu NP / C的优异CO 2RR性能。

著录项

  • 来源
    《Inorganic Chemistry Frontiers》 |2018年第7期|共9页
  • 作者单位

    Peking Univ PKU HKU Joint Lab Rare Earth Mat &

    Bioinorgan Che State Key Lab Rare Earth Mat Chem &

    Applicat Coll Chem &

    Mol Engn Beijing Natl Lab Mol Sci Beijing 100871 Peoples R China;

    Peking Univ PKU HKU Joint Lab Rare Earth Mat &

    Bioinorgan Che State Key Lab Rare Earth Mat Chem &

    Applicat Coll Chem &

    Mol Engn Beijing Natl Lab Mol Sci Beijing 100871 Peoples R China;

    Peking Univ PKU HKU Joint Lab Rare Earth Mat &

    Bioinorgan Che State Key Lab Rare Earth Mat Chem &

    Applicat Coll Chem &

    Mol Engn Beijing Natl Lab Mol Sci Beijing 100871 Peoples R China;

    Peking Univ PKU HKU Joint Lab Rare Earth Mat &

    Bioinorgan Che State Key Lab Rare Earth Mat Chem &

    Applicat Coll Chem &

    Mol Engn Beijing Natl Lab Mol Sci Beijing 100871 Peoples R China;

    Peking Univ PKU HKU Joint Lab Rare Earth Mat &

    Bioinorgan Che State Key Lab Rare Earth Mat Chem &

    Applicat Coll Chem &

    Mol Engn Beijing Natl Lab Mol Sci Beijing 100871 Peoples R China;

    Peking Univ PKU HKU Joint Lab Rare Earth Mat &

    Bioinorgan Che State Key Lab Rare Earth Mat Chem &

    Applicat Coll Chem &

    Mol Engn Beijing Natl Lab Mol Sci Beijing 100871 Peoples R China;

    Peking Univ PKU HKU Joint Lab Rare Earth Mat &

    Bioinorgan Che State Key Lab Rare Earth Mat Chem &

    Applicat Coll Chem &

    Mol Engn Beijing Natl Lab Mol Sci Beijing 100871 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 无机化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号